matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Sa 30.06.2007
Autor: Engel205

Es seien S [mm] \subset \IR^{n} [/mm] offen, [mm] x_{0} [/mm] aus S und g: S [mm] \to \IR [/mm] eine Abbildung. Ferner existiere eine Umgebung von [mm] x_{0}, [/mm] auf der sämtliche partiellen Ableitungen von g existieren und beschränkt sind.
Zeige, dass g in [mm] x_{0} [/mm] stetig ist.

Wie gehe ich an so eine Aufgabe ran?

Vielen Lieben Dank an euch alle!

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Sa 30.06.2007
Autor: angela.h.b.


> Es seien S [mm]\subset \IR^{n}[/mm] offen, [mm]x_{0}[/mm] aus S und g: S [mm]\to \IR[/mm]
> eine Abbildung. Ferner existiere eine Umgebung von [mm]x_{0},[/mm]
> auf der sämtliche partiellen Ableitungen von g existieren
> und beschränkt sind.
>  Zeige, dass g in [mm]x_{0}[/mm] stetig ist.
>  
> Wie gehe ich an so eine Aufgabe ran?

Hallo,

ich gehe an solche Aufgaben wie folgt heran:

- Begriffe klären.
zunächst: Stetigkeit, partielle Ableitungen, partiell diffbar.

- Wie kann ich den Bogen schlagen von partiell diffbar zu stetig?
Was gibt es da?
Anregungen sammeln durch Blättern in Gedächtnis oder Buch.
An sehr direkten Zusammenhängen gibt es folgenden: stetig partiell diffbare Funktionen auf offenen Intervallen sind stetig.

- Dies wäre ein Punkt, an welchem ich tätig werden würde.
Kann man aus den Voraussetzungen auf "stetig diffbar" schließen? (dann hätte man gewonnen!)
Fällt mir ein Hinderungsgrund ein, ein Gegenbeispiel?
Wenn nicht, würde ich in diese Richtung zu arbeiten anfangen.

- Wenn's in eine Sackgasse führt: neu überlegen...

Gruß v. Angela


Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 30.06.2007
Autor: Somebody


> Es seien S [mm]\subset \IR^{n}[/mm] offen, [mm]x_{0}[/mm] aus S und g: S [mm]\to \IR[/mm]
> eine Abbildung. Ferner existiere eine Umgebung von [mm]x_{0},[/mm]
> auf der sämtliche partiellen Ableitungen von g existieren
> und beschränkt sind.
>  Zeige, dass g in [mm]x_{0}[/mm] stetig ist.
>  
> Wie gehe ich an so eine Aufgabe ran?

Möglicherweise hast Du den Mittelwertsatz der Differentialrechnung auch für den mehrdimensionalen Fall zur Verfügung. Dann gilt ja für eine Funktion [mm]g:S\subseteq \IR^m\rightarrow \IR^n[/mm], sofern ihre Ableitung [mm]g_\star[/mm] in [mm]U_\varepsilon(x_0)\subseteq S[/mm] von [mm]x_0[/mm] durch die Konstante [mm]M[/mm] beschränkt ist,
[mm]|g(x)-g(x_0)| \leq M|x-x_0|[/mm]

für alle [mm]x\in U_\varepsilon(x_0)[/mm]. Aus dieser Beziehung folgt die Stetigkeit von [mm]g[/mm] an der Stelle [mm]x_0[/mm] in null-komma-nichts...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]