matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Mo 11.06.2012
Autor: silfide

Aufgabe
Welche der folgenden Funktionen nehmen ihr Supremum und/oder Infimum auf dem Definitionsbereich an und haben also ein Maximum und/oder Minimum? Begründen Sie ihre Antwort. Bestimmen Sie auch die Bilder [mm] f([-2,\infty)) [/mm] und g([0,1]=
a) [mm] f:[2,\infty) [/mm] -> [mm] \IR, [/mm] f(x)=exp(-5x),
b) ...


Guten Abend,

bin mal wieder auskunftsbedürftig.

Sitze schon ne Weile an der Aufgabe a). Irgendwie komme ich nicht klar, da kein festes p (also in Form eines konkreten einsetzbaren Wertes wie z.B. 2)

Wir habe Stetigkeit folgenderweise definiert:
f heißt stetig in p [mm] \in [/mm] D <-> für alle [mm] \varepsilon [/mm] > 0 exsistiert ein [mm] \delta [/mm] > 0
also [mm] |x-p|<\delta [/mm] -> [mm] |f(x)-f(p)|<\varepsilon. [/mm]

(Im Tutorium haben wir immer erstmal was zur Stetigkeit gesagt)

Meine bisherigen Ansätze:

1.
Sei p>0 und [mm] \delta:=p [/mm]
Dann gilt: [mm] |x-p|<\delta=p [/mm] -> x>0 -> |f(x)-f(p)|=|exp(-5x)-exp(-5p)| ... so und nun hört es auch auf ...

2.
[mm] exp(-5x)=\bruch{1}{exp(5x)} [/mm]

|f(x)-f(p)|=| [mm] \bruch{1}{exp(5x)}-\bruch{1}{exp(5p)}|=|\bruch{exp(5p)-exp(5x)}{exp(5x)exp(5p)} [/mm]  .... und auch hier hört es auf ...

3.
Da [mm] exp(-5x)=\bruch{1}{exp(5x)} [/mm] ein Quotient zweier stetiger Funktion ist, ist auch der Quotient stetig. (Bin mir bei der Ausdrucksweise nicht ganz sicher und außerdem würde ich gerne verstehen wie ich die obige Definition anwenden kann).

Max und Min sagt mir nur was bei abgeschlossenen Intervallen.
Ich weiß, dass es sich bei der Funktion um  eine Abklingfunktion handelt und das sie gegen 0 konvergiert. (laut Taschenrechner erreicht die Funktion sogar die Null - aber dem traue ich irgendwie nicht). Ein Maximum hat die Funktion nicht in dem Intervall, aber wie zeige ich das??

Kann jemand bitte helfen?

Mia

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 11.06.2012
Autor: Gonozal_IX

Hiho,

in deiner Aufabe ist doch gar nichts von Stetigkeit zeigen verlangt, warum versuchst du das dann?


> Max und Min sagt mir nur was bei abgeschlossenen Intervallen.
>  Ich weiß, dass es sich bei der Funktion um  eine
> Abklingfunktion handelt und das sie gegen 0 konvergiert.
> (laut Taschenrechner erreicht die Funktion sogar die Null -
> aber dem traue ich irgendwie nicht).

Gute Entscheidung:

>  Ein Maximum hat die Funktion nicht in dem Intervall, aber wie zeige ich das??

Oh doch!
Überlege dir, dass die Funktion monoton fallend ist. Wo hat sie also ihr Supremum?
Ist das Supremum auch ein Maximum?

Wann gibt es denn überhaupt ein Maximum // Minimum?
Alles Fragen, die man mal vorher klären sollte ;-)

MFG,
Gono.

Bezug
                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Mo 11.06.2012
Autor: silfide

Danke Gono.

P.S. Dachte mir, ich bekomme mehr Punkte, wenn ich es wie im Tutorium mache ...
Aber hast natürlich Recht, nach Stetigkeit wird nicht explizit gefragt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]