matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationStetigkeit, Differenzierbarkei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Stetigkeit, Differenzierbarkei
Stetigkeit, Differenzierbarkei < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, Differenzierbarkei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 So 11.01.2009
Autor: Heureka89

Aufgabe
Sei f: [0,1] [mm] \to \IR [/mm] definiert durch f(0) = 0 und f(x): = x*(2 - sin(lnx) - cos(lnx)) für x [mm] \not= [/mm] 0.
Zeugen Sie, dass f in 0 stetig und für x>0 differenizierbar ist.  

Also ich verstehe nicht, wieso die Funktion in 0 stetig sein kann, weil man kann doch nicht den linksseitigen Grenzwert in Null bilden, weil dort ln(x)nicht defeniert ist.


        
Bezug
Stetigkeit, Differenzierbarkei: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 So 11.01.2009
Autor: pelzig

Benutze das [mm] $\varepsilon-\delta$-Kriterium. [/mm] Es ist [mm] $|f(0)-f(x)|=|x|\cdot|2-\sin(\log x)-\cos(\log x)|\le [/mm] 2|x|$, weil Sinus und Cosinus beschränkt sind.

Gruß, Robert

Bezug
                
Bezug
Stetigkeit, Differenzierbarkei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 So 11.01.2009
Autor: Heureka89

Hallo,
danke für den Tipp.
Also ich verstehe noch nicht ganz wie du das [mm] \varepsilon-\delta [/mm] Kriterium anwendest.
Die Definition des Grenzwertes ist ja:
Für alle x mit 0<|x-a|< [mm] \delta [/mm] ist |f(x) - A|< [mm] \varepsilon. [/mm]
Also hier im konkreten Besispiel muss man ja dann zeigen, dass
für alle x mit 0<|x|< [mm] \delta [/mm] ist |x(2 - sin(lnx) - cos(lnx))|< [mm] \varepsilon [/mm]
Also wie wähls man denn Delta?


Bezug
                        
Bezug
Stetigkeit, Differenzierbarkei: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 So 11.01.2009
Autor: XPatrickX

Hey,

du suchst doch ein [mm] \delta, [/mm] sodass für alle x mit [mm] |x|<\delta [/mm] gilt [mm] 2|x|<\varepsilon. [/mm]  Dann wählt doch die Wahl von [mm] \delta [/mm] nicht mehr schwer........ beispielsweise [mm] $\delta:=\varepsilon/2$ [/mm]

Gruß Patrick

Bezug
                
Bezug
Stetigkeit, Differenzierbarkei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 So 11.01.2009
Autor: Heureka89

Ja klar, ich Trottel habe es die ganze Zeit übersehen.
Eine Frage habe ich noch:
Wie zeige ich die Differenzierbarkeit für x>0?
Also meine Idee ist es den Differentialquotienten zu bilden:

[mm] \limes_{x\rightarrow\ x_0} \bruch{ x*(2-sin(lnx)-cosln(x)) - x_0*(2-sinln(x_0) - cosln(x_0))}{x-x_0} [/mm]
Also muss man jetzt argumentieren, dass sin und cos beschränkt sind oder wie zeigt man, dass der Grenzwert existiert?
Verzweifle schon den ganzen Tag an der Aufgabe.

Bezug
                        
Bezug
Stetigkeit, Differenzierbarkei: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 11.01.2009
Autor: pelzig

Für [mm] $x\ne [/mm] 0$ ist doch f auf (0,1] nichts weiter als ein Produkt/Summe/Verkettung differenzierbarer Funktionen.

Gruß, Robert

Bezug
                                
Bezug
Stetigkeit, Differenzierbarkei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 So 11.01.2009
Autor: Heureka89

Danke,

bin auf die einfachste Sache nicht draufgekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]