matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit / Äquivalenzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetigkeit / Äquivalenzen
Stetigkeit / Äquivalenzen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit / Äquivalenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 14.03.2012
Autor: Lu-

Aufgabe
Folgende Stetigkeitsdefinitionen an einer Stelle $ [mm] x_0 \in \IR [/mm] $ für etwa eine Funktion $ f: [mm] \IR \to \IR [/mm] $sind äquivalent:

   1.) $ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0: [mm] |x-x_0|\; \red{<}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{<}\; \epsilon\,, [/mm] $  
   2.) $ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0: [mm] |x-x_0|\; \red{\le}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{<}\; \epsilon\,, [/mm] $  
  3.) $ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0: [mm] |x-x_0|\; \red{<}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{\le}\; \epsilon\,, [/mm] $  
  4.) $ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0: [mm] |x-x_0|\; \red{\le}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{\le}\; \epsilon\,. [/mm] $


Diese Frage hab ich hier: https://matheraum.de/read?t=874087 entdeckt.
Und da ich grad an der Stetigkeit dran bin, würde ich gerne das Beispiel verstehen!!
In der Vorlesung hatten wir:
Eine Funktion f ist stetig an [mm] x_0 [/mm] wenn
[mm] x_0 \in [/mm] D und f:D -> [mm] \IR [/mm]
[mm] \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] >0 : [mm] \forall [/mm] x [mm] \in [/mm] D : [mm] |x-x_0 [/mm] | < [mm] \dela [/mm] => |f(x) - [mm] f(x_0)| [/mm] < [mm] \varepsilon [/mm]

Aber wie geht man das obige Beipiel an?


        
Bezug
Stetigkeit / Äquivalenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Do 15.03.2012
Autor: cycore

Hallo,

> Folgende Stetigkeitsdefinitionen an einer Stelle [mm]x_0 \in \IR[/mm]
> für etwa eine Funktion [mm]f: \IR \to \IR [/mm] sind äquivalent:
>  
> 1.) [mm]\forall \epsilon > 0 \exists \delta > 0: |x-x_0|\; \red{<}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{<}\; \epsilon\,,[/mm]
>  
> 2.) [mm]\forall \epsilon > 0 \exists \delta > 0: |x-x_0|\; \red{\le}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{<}\; \epsilon\,,[/mm]
>  
> 3.) [mm]\forall \epsilon > 0 \exists \delta > 0: |x-x_0|\; \red{<}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{\le}\; \epsilon\,,[/mm]
>  
> 4.) [mm]\forall \epsilon > 0 \exists \delta > 0: |x-x_0|\; \red{\le}\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{\le}\; \epsilon\,.[/mm]
>
> [...]

>

>  Und da ich grad an der Stetigkeit dran bin, würde ich
> gerne das Beispiel verstehen!!

Nun, an der obigen Aufgabe lernt man eher weniger über stetigkeit (außer daß es egal, ist ob die Ungeleichungen echt sind oder nicht), als das sie überprüft (es scheint ja eineKlausuraufgabe zu sein), inwieweit der Prüfling in der Lage ist Beweise zu strukturieren. Wenn man hier nämlich klassischer Weise einen Ringschluß ansetzt, d.h. stur [mm]1)\Rightarrow 2)\Rightarrow 3)\Rightarrow 4)\Rightarrow 1)[/mm] zeigt, macht man sich viel zu viel Arbeit.
>

> [...]
>  
> Aber wie geht man das obige Beipiel an?
>

Wenn du genau hinsiehst wirst du feststellen, daß für die folgenden Implikationen nichts zu zeigen ist:
[mm]2)\Rightarrow 1),\;2)\Rightarrow 4)[/mm] und jeweils [mm]1)\text{ oder } 4)\Rightarrow 3)[/mm]. Vergewissere dich davon indem du dir jede genau überlegst. Das ist etwas zum hinsehen und kaum wert aufgeschrieben zu werden.
Um die Äquivalenz aller Aufgaben zu zeigen genügt es also [mm]3)\Rightarrow 2)[/mm] zu zeigen.

Dazu eine kleine Anleitung. Gebe dir ein beliebiges [mm]\varepsilon>0[/mm] vor. Wenn 3) gilt, dann gibt es ein [mm]\delta'>0[/mm] so, daß für alle [mm]x[/mm] mit [mm]|x-x_0|<\delta'[/mm] gilt [mm]|f(x)-(x_0)|\leq\varepsilon/2[/mm]. Dann wähle [mm]\delta = \delta'/2[/mm] und zeige, dass damit 2) erfüllt ist.

Gruß Cycore


Bezug
                
Bezug
Stetigkeit / Äquivalenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Fr 16.03.2012
Autor: Lu-

Könntest du mir die "triviale" Implikation 2->4 vlt kurz erklären?
Vielen lieben dank

Bezug
                        
Bezug
Stetigkeit / Äquivalenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Fr 16.03.2012
Autor: tobit09

Hallo Lu-,

> Könntest du mir die "triviale" Implikation 2->4 vlt kurz
> erklären?

2.) $ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0: [mm] |x-x_0|\; \le\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{<}\; \epsilon\,, [/mm] $
4.) $ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0: [mm] |x-x_0|\; \le\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{\le}\; \epsilon\,. [/mm] $

Das Wesentliche ist, dass die Bedingung [mm] $|f(x)-f(x_0)|\; \red{<}\; \epsilon$ [/mm] insbesondere die Bedingung [mm] $|f(x)-f(x_0)|\; \red{\le}\; \epsilon$ [/mm] impliziert.


Ausführlich:

Sei [mm] $\epsilon>0$. [/mm] Nach 2.) existiert ein [mm] $\delta>0$ [/mm] mit

(*)      [mm] $|x-x_0|\; \le\; \delta \Rightarrow |f(x)-f(x_0)|\; \red{\le}\; \epsilon$. [/mm]

Wir zeigen, dass dieses [mm] $\delta$ [/mm] das Gewünschte leistet.

Sei dazu [mm] $x\in\IR$ [/mm] mit [mm] $|x-x_0|\;\le\;\delta$. [/mm]

Nach (*) gilt [mm] $|f(x)-f(x_0)|\; \red{<}\; \epsilon$ [/mm] und somit insbesondere [mm] $|f(x)-f(x_0)|\; \red{\le}\; \epsilon$. [/mm]


Viele Grüße
Tobias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]