matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Substitution
Substitution < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Idee
Status: (Frage) beantwortet Status 
Datum: 18:20 So 11.01.2015
Autor: Morph007

Aufgabe
Lösen Sie die folgende DGL durch eine geeignete Substitution:

[mm] $y'=\frac{x+y}{x-y}$ [/mm]

Welche Substitution ist denn hier am geeignetsten?
Ich komme einfach auf keine.

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 11.01.2015
Autor: MathePower

Hallo  Morph007,

> Lösen Sie die folgende DGL durch eine geeignete
> Substitution:
>  
> [mm]y'=\frac{x+y}{x-y}[/mm]
>  Welche Substitution ist denn hier am geeignetsten?
>  Ich komme einfach auf keine.


Hier führt eine Substitution in Polarkoordianten auf eine
Lösungsdarstelluing in Parameterform.

Diese habe ich hier erläutert.


Gruss
MathePower

Bezug
                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:53 Mo 12.01.2015
Autor: Morph007

Wenn das Ergebnis in expliziter Form angegeben werden soll, kann ich dann überhaupt in Polarkoordinaten substituieren?

Bezug
                        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Mo 12.01.2015
Autor: MathePower

Hallo Morph007,

> Wenn das Ergebnis in expliziter Form angegeben werden soll,
> kann ich dann überhaupt in Polarkoordinaten substituieren?


Du kannst zwar das "t" in Abhäbngigkeit von y und x ausdrücken.
Jedoch wirst Du in den meisten Fällen eine implizite Lösungs-
darstellung erhalten.


Gruss
MathePower

Bezug
        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mo 12.01.2015
Autor: fred97


> Lösen Sie die folgende DGL durch eine geeignete
> Substitution:
>  
> [mm]y'=\frac{x+y}{x-y}[/mm]
>  Welche Substitution ist denn hier am geeignetsten?
>  Ich komme einfach auf keine.


Es ist [mm]y'=\frac{1+y/x}{1-y/x}[/mm]

Substituiere [mm] u(x)=\bruch{y(x)}{x} [/mm]

Das führt auf eine Dgl. mit getrennten Veränderlichen.

FRED

Bezug
                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Mo 12.01.2015
Autor: Morph007

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Okay. Wenn ich jetzt mal von Polarkoordinaten absehe und weiter auflöse, erhalte ich am Ende:

$\frac{1}{2}*\ln{(\frac{y^2}{x^2}}-\frac{2y}{x}-1)}=\ln{(x)}+C$

Stimmt das so?

Bezug
                        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Di 13.01.2015
Autor: Martinius

Hallo morph007,

> Okay. Wenn ich jetzt mal von Polarkoordinaten absehe und
> weiter auflöse, erhalte ich am Ende:
>  
> [mm]\frac{1}{2}*\ln{(\frac{y^2}{x^2}}-\frac{2y}{x}-1)}=\ln{(x)}+C[/mm]
>  
> Stimmt das so?


Ich habe:   [mm] $ln\left|\frac{x^2+y^2}{x^2} \right|-2*arctan\left(\frac{y}{x} \right)\;=\;-2*ln|x|+C$ [/mm]


Hoffentlich ohne Fehler.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]