matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Summen multiplizieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Summen multiplizieren
Summen multiplizieren < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen multiplizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 So 09.12.2007
Autor: Engel-auf-Wolke

Aufgabe
Zeigen Sie, dass [mm] v_{1} [/mm] = [mm] v_{2} [/mm] = [mm] v_{3}. [/mm]

[mm] v_{1} [/mm] = [mm] \bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}-x^{'})^{2} [/mm]
[mm] v_{2} [/mm] = [mm] \bruch{1}{n-1} ((\summe_{i=1}^{n} x_{i}^{2})-nx^{'}^{2}) [/mm]
[mm] v_{3} [/mm] = [mm] \bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}^{2}-x^{'}^{2}) [/mm]

Ich weiß, dass [mm] v_{1} [/mm] - [mm] v_{3} [/mm] Varianzen sind.
Außerdem weiß ich, dass [mm] x^{'} [/mm] der Mittelwert von [mm] x_{i} [/mm] ist mit [mm] x^{'}= \bruch{1}{n} \summe_{i=1}^{n} x_{i}. [/mm]
Nun soll ich also zeigen, dass [mm] v_{1} [/mm] = [mm] v_{2} [/mm] = [mm] v_{3}. [/mm]

Leider bin ich nicht so gut darin mit Summen zu rechnen.
Was ich noch hinbekomme ist, in [mm] v_{1} [/mm] - [mm] v_{3} x^{'} [/mm] einzusetzen. Aber dann weiß ich leider nicht weiter.

[mm] v_{1} [/mm] = [mm] \bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}-\bruch{1}{n} \summe_{i=1}^{n} x_{i})^{2} [/mm]
[mm] v_{2} [/mm] = [mm] \bruch{1}{n-1} ((\summe_{i=1}^{n} x_{i}^{2})-n(\bruch{1}{n} \summe_{i=1}^{n} x_{i})^{2}) [/mm]
[mm] v_{3} [/mm] = [mm] \bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}^{2}-(\bruch{1}{n} \summe_{i=1}^{n} x_{i})^{2}) [/mm]

Vielleicht kann mir ja jemand einen Tipp geben.
Danke!
Stephanie

        
Bezug
Summen multiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Mo 10.12.2007
Autor: rainerS

Hallo Stephanie!

> Zeigen Sie, dass [mm]v_{1}[/mm] = [mm]v_{2}[/mm] = [mm]v_{3}.[/mm]
>
> [mm]v_{1} = \bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}-x^{'})^{2}[/mm]
>  
> [mm]v_{2}[/mm] = [mm]\bruch{1}{n-1} ((\summe_{i=1}^{n} x_{i}^{2})-nx^{'}^{2})[/mm]
>  
> [mm]v_{3}[/mm] = [mm]\bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}^{2}-x^{'}^{2})[/mm]
>  
> Ich weiß, dass [mm]v_{1}[/mm] - [mm]v_{3}[/mm] Varianzen sind.
>  Außerdem weiß ich, dass [mm]x^{'}[/mm] der Mittelwert von [mm]x_{i}[/mm] ist
> mit [mm]x^{'}= \bruch{1}{n} \summe_{i=1}^{n} x_{i}.[/mm]
>  Nun soll
> ich also zeigen, dass [mm]v_{1}[/mm] = [mm]v_{2}[/mm] = [mm]v_{3}.[/mm]
>  
> Leider bin ich nicht so gut darin mit Summen zu rechnen.
>  Was ich noch hinbekomme ist, in [mm]v_{1}[/mm] - [mm]v_{3} x^{'}[/mm]
> einzusetzen. Aber dann weiß ich leider nicht weiter.

Tipp: Binom ausmultiplizieren:

[mm] \summe_{i=1}^{n} (x_{i}-x')^{2} = \summe_{i=1}^{n}(x_i^2-2x_ix'+x'^2) =\left(\summe_{i=1}^{n}x_i^2\right) - 2 x' \underbrace{\left(\summe_{i=1}^{n}x_i\right)}_{nx'} +x '^2 \underbrace{\summe_{i=1}^{n}1}_n = \left(\summe_{i=1}^{n}x_i^2\right) - 2 n x'^2 + n x'^2 =\left(\summe_{i=1}^{n}x_i^2\right) - n x'^2 [/mm]

Die anderen gehen genauso.

Viele Grüße
   Rainer

Bezug
                
Bezug
Summen multiplizieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Mo 10.12.2007
Autor: Engel-auf-Wolke

Danke!
Stephanie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]