matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieSummen von Quadraten II
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Summen von Quadraten II
Summen von Quadraten II < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen von Quadraten II: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:10 Di 16.01.2007
Autor: Mikke

Hallo habe noch eine weitere Menge die ich auf multiplikative Abgeschlossenheit. Insgesamt waren es vier.Bei zweien habe ich es selbst hinbekomme.Dort war eine multiklikativ abgeschlossen und eine nicht.Darum müsste jetzt wahrscheinlich noch eine abgeschlossene Menge kommen..

Wie kann ich also zeigen, dass auch die Menge {n : es gibt x,y [mm] \in \IZ [/mm] mit [mm] x^{3}+y^{3}=n} [/mm]  multiplikativ abgeschlossen ist oder wenn nicht, ob ihr mir dann wiederum ein gegenbeispiel sagen könntet?
Dankeschön schon mal und mit freundlichem Gruß Mikke


        
Bezug
Summen von Quadraten II: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Mi 17.01.2007
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Mikke!

> Hallo habe noch eine weitere Menge die ich auf
> multiplikative Abgeschlossenheit. Insgesamt waren es
> vier.Bei zweien habe ich es selbst hinbekomme.Dort war eine
> multiklikativ abgeschlossen und eine nicht.Darum müsste
> jetzt wahrscheinlich noch eine abgeschlossene Menge
> kommen..
>
> Wie kann ich also zeigen, dass auch die Menge {n : es gibt
> x,y [mm]\in \IZ[/mm] mit [mm]x^{3}+y^{3}=n}[/mm]  multiplikativ abgeschlossen
> ist oder wenn nicht, ob ihr mir dann wiederum ein
> gegenbeispiel sagen könntet?
> Dankeschön schon mal und mit freundlichem Gruß Mikke

Also 2 ist ein Element in der Menge, weil $2 = [mm] 1^3 [/mm] + [mm] 1^3$. [/mm] Jedoch ist [mm] $2^2 [/mm] = 4$ nicht in der Menge:

wenn $4 = [mm] x^3 [/mm] + [mm] y^3 [/mm] = [mm] (x^2 [/mm] - x y + [mm] y^2) [/mm] (x + y)$ ist, dann muss $x + y [mm] \in \{ \pm 1, \pm 2, \pm 4 \}$ [/mm] sein. Wenn man sich $4 = [mm] x^3 [/mm] + [mm] y^3$ [/mm] modulo 4 anschaut, dann sieht man schnell, dass $x [mm] \equiv [/mm] y [mm] \pmod{2}$ [/mm] gelten muss. Damit gilt $x + y [mm] \neq \pm [/mm] 1$.

Es bleiben also die Moeglichkeiten $x + y = [mm] \pm [/mm] 2, [mm] \pm [/mm] 4$. Jede Moeglichkeit fuehrt durch Einsetzen in $4 = [mm] x^3 [/mm] + [mm] y^3$ [/mm] auf eine quadratische Gleichung, und man kann schnell nachpruefen, dass keine eine ganzzahlige Loesung hat.

Vielleicht geht das aber auch noch etwas eleganter :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]