matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSuperMG, E konstant Martingal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - SuperMG, E konstant Martingal
SuperMG, E konstant Martingal < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

SuperMG, E konstant Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Mo 15.11.2010
Autor: Bappi

Aufgabe
Es sei [mm] $(X_n,\mathcal F_n)_{n\in\mathbb N}$ [/mm] ein Super-Martingal derart, dass [mm] $\mathbb EX_n [/mm] = [mm] \text{ const}$. [/mm] Zeige, dass [mm] $(X_n)_{n\in\mathbb N}$ [/mm] bereits ein Martingal ist.

Hallo!

Es muss sehr einfach sein, nur irgendwie habe ich gerade Denkprobleme.

Ich weiß, dass [mm] $\mathbb E(X_n\mid \mathcal F_{n-1}) \leq X_{n-1}$ [/mm] und der Erwartungswert einen konstanten Wert annimmt, und irgendwie muss ich wohl mit den  "typischen" Eigenschaften der bedingten Erwartung spielen, aber...

Vlt hat jemand Denkanstöße für mich :)

        
Bezug
SuperMG, E konstant Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Di 16.11.2010
Autor: Marc

Hallo Bappi,

es wäre nett, wenn du uns auch weiterhin auf Crossposting hinweist! :-)

> Es sei [mm](X_n,\mathcal F_n)_{n\in\mathbb N}[/mm] ein
> Super-Martingal derart, dass [mm]\mathbb EX_n = \text{ const}[/mm].
> Zeige, dass [mm](X_n)_{n\in\mathbb N}[/mm] bereits ein Martingal
> ist.
>  Hallo!
>  
> Es muss sehr einfach sein, nur irgendwie habe ich gerade
> Denkprobleme.
>  
> Ich weiß, dass [mm]\mathbb E(X_n\mid \mathcal F_{n-1}) \leq X_{n-1}[/mm]
> und der Erwartungswert einen konstanten Wert annimmt, und
> irgendwie muss ich wohl mit den  "typischen" Eigenschaften
> der bedingten Erwartung spielen, aber...

Es gilt doch [mm] $E(E(X_n\mid \mathcal F_{n-1}))=E(X_n)$ [/mm] (Eigenschaft der bedingten Erwartung)

Weiterhin [mm] $E(X_n\mid \mathcal F_{n-1}) \leq X_{n-1}$ $\Rightarrow$ $E(X_n\mid \mathcal F_{n-1}) -X_{n-1}\leq [/mm] 0$

Damit haben wir

[mm] $E(\underbrace{E(X_n\mid \mathcal F_{n-1}) -X_{n-1}}_{\leq 0})=?$ [/mm]

Was lässt sich nun über das Argument des äußeren Erwartungswerts sagen?

Viele Grüße,
Marc




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]