matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesSupremum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Supremum
Supremum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Di 20.12.2011
Autor: Amiaz

Aufgabe
Sei M [mm] \subset \IR [/mm] nach oben beschränkt und sei a eine obere Schranke zu M. Zeigen Sie: Wenn [mm] a_n \in [/mm] M existieren, sodass [mm] \limes_{n\rightarrow\infty} a_n [/mm] = a , so gilt a = sup M
Hinweis: Widerspruchsbeweis.

Irgendwie ist mir klar was da steht.
M ist beschränkt und der [mm] \limes_{n\rightarrow\infty} [/mm] geht gegen a. Dadurch folgt ja auch automatisch, dass a das Supremum ist.
Doch wie zeig ich das? Nehm ich an, dass a nicht das Supremum ist und zeig dann den Widerspruch?
wenn ja, wie genau setz ich da an?

        
Bezug
Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 20.12.2011
Autor: fred97


> Sei M [mm]\subset \IR[/mm] nach oben beschränkt und sei a eine
> obere Schranke zu M. Zeigen Sie: Wenn [mm]a_n \in[/mm] M existieren,
> sodass [mm]\limes_{n\rightarrow\infty} a_n[/mm] = a , so gilt a =
> sup M
>  Hinweis: Widerspruchsbeweis.
>  Irgendwie ist mir klar was da steht.
>  M ist beschränkt

M ist nur nach oben beschränkt !


> und der [mm]\limes_{n\rightarrow\infty}[/mm] geht
> gegen a.

nein. Der Limes von [mm] (a_n) [/mm]  ist = a


> Dadurch folgt ja auch automatisch,


automatisch ?


> dass a das
> Supremum ist.
>  Doch wie zeig ich das? Nehm ich an, dass a nicht das
> Supremum ist und zeig dann den Widerspruch?
>  wenn ja, wie genau setz ich da an?

Sei s:= sup M. Annahme: a [mm] \ne [/mm] s. Da a eine obere Schranke von M ist, folgt: s<a. Nun haben wir:

                 [mm] a_n \le [/mm] s für jedes n.

Jetzt Du.

FRED


Bezug
                
Bezug
Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Mi 21.12.2011
Autor: Amiaz

Komm ich nicht dran weiter...
Ich soll doch nun mit der Annahme a < s das zum Widerspruch führen indem ich rausfinde, dass a = s ist?

Edit:
Hab nun weiter nachgedacht:
Also:
Können wir vorraussetzen, dass [mm] a_n \in [/mm] M und [mm] \limes_{n\rightarrow\infty} a_n [/mm] = ist?
Dann wüssten wir ja, dass a der Limes ist. Zudem ist a eine obere Schranke. Daraus würde ja folgen, dass a das Supremum ist.

Bezug
                        
Bezug
Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mi 21.12.2011
Autor: fred97


> Komm ich nicht dran weiter...
>  Ich soll doch nun mit der Annahme a < s das zum
> Widerspruch führen indem ich rausfinde, dass a = s ist?
>  Edit:
>  Hab nun weiter nachgedacht:
>  Also:
>  Können wir vorraussetzen, dass [mm]a_n \in[/mm] M und
> [mm]\limes_{n\rightarrow\infty} a_n[/mm] = ist?


Mann !!!!!!!!!!!!!!!!

Voraussetzungen sind:

1. a ist eine obere Schranke von M.

2. [mm] (a_n) [/mm] ist eine konvergente Folge in M mit Grenzwert a.

Zeigen sollst Du : a= sup M.




>  Dann wüssten wir ja, dass a der Limes ist.

Mann, mann !!

Zudem ist a

> eine obere Schranke. Daraus würde ja folgen, dass a das
> Supremum ist.

Ja, aber warum ??????


So weit waren wir:

Sei s:= sup M. Annahme: a $ [mm] \ne [/mm] $ s. Da a eine obere Schranke von M ist, folgt: s<a. Nun haben wir:

                 $ [mm] a_n \le [/mm] $ s für jedes n.

Dann folgt: a [mm] \le [/mm] s, also a<a, Widerspruch !

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]