matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraSylow Sätze
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Sylow Sätze
Sylow Sätze < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sylow Sätze: Aufgabe /Erklärung
Status: (Frage) beantwortet Status 
Datum: 14:33 Mi 05.04.2006
Autor: cycilia

Aufgabe
G Gruppe |G| =mp, p prim, m < p.
Beweise G besitzt Untergruppe der Ordnung p mit p Normalteiler in G

Nach dem ersten Sylowsatz besitzt G eine Untergruppe derOrdnung p. Diese ist eine p-Sylowgruppe.

Nach dem dritten Sylowsatz ist die Anzahl der p-Sylowgrupper hier 1,
da m < p. Hieraus folgt bereits, dass diese p-Sylowgruppe ein Normalteiler in G ist. Zumindest war das bei einer ähnlichen Aufgabe so. Warum verstehe ich allerdings nicht.

        
Bezug
Sylow Sätze: So geht's
Status: (Antwort) fertig Status 
Datum: 15:05 Mi 05.04.2006
Autor: statler

Jetzt zu diesem Thema, Anja:

> G Gruppe |G| =mp, p prim, m < p.
>  Beweise G besitzt Untergruppe der Ordnung p mit p
> Normalteiler in G
>  Nach dem ersten Sylowsatz besitzt G eine Untergruppe
> derOrdnung p. Diese ist eine p-Sylowgruppe.
>  
> Nach dem dritten Sylowsatz ist die Anzahl der
> p-Sylowgrupper hier 1,
>  da m < p. Hieraus folgt bereits, dass diese p-Sylowgruppe
> ein Normalteiler in G ist. Zumindest war das bei einer
> ähnlichen Aufgabe so. Warum verstehe ich allerdings nicht.

Weil die p-Sylow-Gruppen zueinander konjugiert sind, d. h. durch innere Automorphismen aufeinander abgebildet werden. Wenn es nur eine gibt, bildet jeder innere Autom. diese auf sich ab, und damit ist sie ein NT!

LG
Dieter



Bezug
                
Bezug
Sylow Sätze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mi 05.04.2006
Autor: cycilia

Ich habe verscht folgendes zu beweisen: G Gruppe, N Untergruppe von G. Wenn N als einzige Untergruppe die Ordnung p hat, dann ist N ein Normalteiler in G

N Normalteiler <=> [mm] aNa^{-1}= [/mm] N

[mm] aNa^{-1} [/mm] ist eine Untergruppe von G (lässt sich leicht nachrechnen).
Diese Untergruppe hat genausoviele Elemente, wie N, daher ist
n  [mm] \mapsto ana^{-1} [/mm] eine Bijektion von N. Nach Def ist dieses also ein Normalteiler. Richtig?

Ich nehme an, mit innerem Automorphismus meinst du dann genau meine Bijektion. Stimmt also mit deiner Erklärung überein.

Bezug
                        
Bezug
Sylow Sätze: So OK
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 05.04.2006
Autor: statler

Hi!

Wenn es zu einer vorgegebenen Ordnung nur eine Untergruppe gibt, dann muß das ein NT sein, das hast du dir gerade überlegt.

Bei p-Sylow-Gruppen, die natürlich alle die gleiche Ordnung haben, gilt umgekehrt noch mehr: Zu 2 davon gibt es immer einen inneren Automorphismus, der die eine in die andere überführt. Das ist bei beliebigen U-Gruppen gleicher Ordnung nicht unbedingt der Fall, denk z. B. an die Kleinsche Vierergruppe, die abelsch ist. Da ist jeder innere Autom. die Identität.

Grüße aus Harburg
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]