matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSysteme lin. Dgl. 1. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Systeme lin. Dgl. 1. Ordnung
Systeme lin. Dgl. 1. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Systeme lin. Dgl. 1. Ordnung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:00 Mi 05.02.2014
Autor: riju

Aufgabe
x'=-x+5y
y'=-y+t
Ges. allgemeine Lösung

Ich bereite mich gerade für ne Prüfung vor und würde jetzt gern wissen ob ich die o.g. Aufgabe richtig gerechnet habe.

Hier mein Lösungsvorschlag:

Lösung
Homogener Teil:
[mm] det(A-lambdaE)=\vmat{ -1-lambda & 5 \\ 0 & -1-lambda } [/mm] =λ^2+2λ+1  => λ_1,2=-1
Eigenvektor zu λ = -1:
[mm] \vektor{1 \\ 0} [/mm]
Hauptvektor, da algebraische Vielfachheit ≠ geometrischer Vielfachheit:
1/5  [mm] \vektor{0 \\ 1} [/mm]

Lösung des homogenen Teils:
[mm] \vektor{z1 \\ z2}= C_1 [/mm]  e^(-t)  [mm] \vektor{1 \\ 0} +C_2 [/mm]  e^(-t) [mm] (\bruch{1}{5} [/mm] * [mm] \vektor{0 \\ 1}+t\vektor{1 \\ 0}) [/mm]

Ansatz für inhomogenen Teil:
[mm] \vektor{x \\ y}=\vektor{A_0 \\ B_0}+\vektor{A_1 \\ B_1}t [/mm]
[mm] \vektor{x' \\ y'})=\vektor{A_1 \\ B_1} [/mm]
[mm] \vektor{A_1 \\ B_1}= \pmat{ -1 & 5 \\ 0 & -1 } \vektor{A_0 \\ B_0}+ \pmat{ -1 & 5 \\ 0 & -1 }\vektor{A_1 \\ B_1}t+\vektor{0 \\ 1}t [/mm]
[mm] \vektor{A_1 \\ B_1}+\vektor{A_0-5B_0 \\ B_0}+\vektor{A_1-5B_1 \\ B_1}t=\vektor{0 \\ 1}t [/mm]

Durch Koeffizientenvergleich ergibt sich:
[mm] A_0=-10 [/mm]
[mm] A_1=5 [/mm]
[mm] B_0= [/mm] -1
[mm] B_1=1 [/mm]
[mm] \vektor{x \\ y}=\vektor{-10 \\ -1}+\vektor{5 \\ 1}t [/mm]

Daraus ergibt sich:
[mm] \vektor{x \\ y}=C_1 [/mm]  e^(-t)  [mm] \vektor{1 \\ 0} +C_2 [/mm]  e^(-t) [mm] (\bruch{1}{5} \vektor{0 \\ 1}+t\vektor{1 \\ 0})+\vektor{-10 \\ -1}+\vektor{5 \\ 1}t [/mm]


        
Bezug
Systeme lin. Dgl. 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mi 05.02.2014
Autor: MathePower

Hallo riju,

> x'=-x+5y
>  y'=-y+t
>  Ges. allgemeine Lösung
>  Ich bereite mich gerade für ne Prüfung vor und würde
> jetzt gern wissen ob ich die o.g. Aufgabe richtig gerechnet
> habe.
>  
> Hier mein Lösungsvorschlag:
>  
> Lösung
>  Homogener Teil:
>  [mm]det(A-lambdaE)=\vmat{ -1-lambda & 5 \\ 0 & -1-lambda }[/mm]
> =λ^2+2λ+1  => λ_1,2=-1
>  Eigenvektor zu λ = -1:
>  [mm]\vektor{1 \\ 0}[/mm]
>  Hauptvektor, da algebraische Vielfachheit
> ≠ geometrischer Vielfachheit:
>  1/5  [mm]\vektor{0 \\ 1}[/mm]
>  
> Lösung des homogenen Teils:
>  [mm]\vektor{z1 \\ z2}= C_1[/mm]  e^(-t)  [mm]\vektor{1 \\ 0} +C_2[/mm]  
> e^(-t) [mm](\bruch{1}{5}[/mm] * [mm]\vektor{0 \\ 1}+t\vektor{1 \\ 0})[/mm]
>  
> Ansatz für inhomogenen Teil:
>  [mm]\vektor{x \\ y}=\vektor{A_0 \\ B_0}+\vektor{A_1 \\ B_1}t[/mm]
>  
> [mm]\vektor{x' \\ y'})=\vektor{A_1 \\ B_1}[/mm]
>  [mm]\vektor{A_1 \\ B_1}= \pmat{ -1 & 5 \\ 0 & -1 } \vektor{A_0 \\ B_0}+ \pmat{ -1 & 5 \\ 0 & -1 }\vektor{A_1 \\ B_1}t+\vektor{0 \\ 1}t[/mm]
>  
> [mm]\vektor{A_1 \\ B_1}+\vektor{A_0-5B_0 \\ B_0}+\vektor{A_1-5B_1 \\ B_1}t=\vektor{0 \\ 1}t[/mm]
>  
> Durch Koeffizientenvergleich ergibt sich:
>  [mm]A_0=-10[/mm]
>  [mm]A_1=5[/mm]
>  [mm]B_0=[/mm] -1
>  [mm]B_1=1[/mm]
>  [mm]\vektor{x \\ y}=\vektor{-10 \\ -1}+\vektor{5 \\ 1}t[/mm]
>  
> Daraus ergibt sich:
>  [mm]\vektor{x \\ y}=C_1[/mm]  e^(-t)  [mm]\vektor{1 \\ 0} +C_2[/mm]  e^(-t)
> [mm](\bruch{1}{5} \vektor{0 \\ 1}+t\vektor{1 \\ 0})+\vektor{-10 \\ -1}+\vektor{5 \\ 1}t[/mm]
>  


Alles richtig. [ok]


Gruss
MathePower

Bezug
        
Bezug
Systeme lin. Dgl. 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mi 05.02.2014
Autor: fred97


> x'=-x+5y
>  y'=-y+t
>  Ges. allgemeine Lösung
>  Ich bereite mich gerade für ne Prüfung vor und würde
> jetzt gern wissen ob ich die o.g. Aufgabe richtig gerechnet
> habe.
>  
> Hier mein Lösungsvorschlag:
>  
> Lösung
>  Homogener Teil:
>  [mm]det(A-lambdaE)=\vmat{ -1-lambda & 5 \\ 0 & -1-lambda }[/mm]
> =λ^2+2λ+1  => λ_1,2=-1
>  Eigenvektor zu λ = -1:
>  [mm]\vektor{1 \\ 0}[/mm]
>  Hauptvektor, da algebraische Vielfachheit
> ≠ geometrischer Vielfachheit:
>  1/5  [mm]\vektor{0 \\ 1}[/mm]
>  
> Lösung des homogenen Teils:
>  [mm]\vektor{z1 \\ z2}= C_1[/mm]  e^(-t)  [mm]\vektor{1 \\ 0} +C_2[/mm]  
> e^(-t) [mm](\bruch{1}{5}[/mm] * [mm]\vektor{0 \\ 1}+t\vektor{1 \\ 0})[/mm]
>  
> Ansatz für inhomogenen Teil:
>  [mm]\vektor{x \\ y}=\vektor{A_0 \\ B_0}+\vektor{A_1 \\ B_1}t[/mm]
>  
> [mm]\vektor{x' \\ y'})=\vektor{A_1 \\ B_1}[/mm]
>  [mm]\vektor{A_1 \\ B_1}= \pmat{ -1 & 5 \\ 0 & -1 } \vektor{A_0 \\ B_0}+ \pmat{ -1 & 5 \\ 0 & -1 }\vektor{A_1 \\ B_1}t+\vektor{0 \\ 1}t[/mm]
>  
> [mm]\vektor{A_1 \\ B_1}+\vektor{A_0-5B_0 \\ B_0}+\vektor{A_1-5B_1 \\ B_1}t=\vektor{0 \\ 1}t[/mm]
>  
> Durch Koeffizientenvergleich ergibt sich:
>  [mm]A_0=-10[/mm]
>  [mm]A_1=5[/mm]
>  [mm]B_0=[/mm] -1
>  [mm]B_1=1[/mm]
>  [mm]\vektor{x \\ y}=\vektor{-10 \\ -1}+\vektor{5 \\ 1}t[/mm]
>  
> Daraus ergibt sich:
>  [mm]\vektor{x \\ y}=C_1[/mm]  e^(-t)  [mm]\vektor{1 \\ 0} +C_2[/mm]  e^(-t)
> [mm](\bruch{1}{5} \vektor{0 \\ 1}+t\vektor{1 \\ 0})+\vektor{-10 \\ -1}+\vektor{5 \\ 1}t[/mm]
>  
>  


Viel einfacher wirds, wenn Du aus den beiden Gleichungen

x'=-x+5y
y'=-y+t

folgendes herausholst:

(*) x''+2x'+x=5t

Das ist eine lineare DGL 2. Ordnung mit konstanten Koeffizienten.

Die zugehörige homogene Gl. hat das einfache char. Polynom [mm] (\lambda+1)^2 [/mm]

Bestimme also die allg. Lösung von (*)

Aus 5y=x'+x etc.....

FRED

Bezug
                
Bezug
Systeme lin. Dgl. 1. Ordnung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 Mi 05.02.2014
Autor: riju

Leider hatte ich das so nicht, daher verstehe ich das nicht ganz. Aber trotzdem danke schön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]