matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSysteme von Diff-Gleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Systeme von Diff-Gleichungen
Systeme von Diff-Gleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Systeme von Diff-Gleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:31 Sa 26.05.2012
Autor: mike1988

Aufgabe
Man berechne die allgemeine Lösung [mm] \vec{x} [/mm] des Differentialgleichungssystems von der Form [mm] \vec{x}^{.}_{(t)} [/mm] = [mm] A*\vec{x}_{(t)} [/mm] mit A = [mm] \pmat{ 3 & -1 \\ 1 & 1 }. [/mm] Hinweis: Man löse dieses Beispiel durch Übergang auf eine Differentialgleichung 2. Ordnung!

Hallo!

Habe einige Probleme bei o. g. Beispiel!

Ich kann dieses System ja als 2 Differentialgleichungen 1. Ordnung aufschreiben:

[mm] x^{.} [/mm] = 3*x-y
[mm] y^{.} [/mm] = x+y

Nur wie kann ich diese beiden Differentialgleichungen erster Ordnung in eine Differentialgleichung 2. Ordnung überführen??

Wäre für jeden Tipp sehr dankbar!

Lg

        
Bezug
Systeme von Diff-Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 26.05.2012
Autor: MathePower

Hallo mike1988,

> Man berechne die allgemeine Lösung [mm]\vec{x}[/mm] des
> Differentialgleichungssystems von der Form
> [mm]\vec{x}^{.}_{(t)}[/mm] = [mm]A*\vec{x}_{(t)}[/mm] mit A = [mm]\pmat{ 3 & -1 \\ 1 & 1 }.[/mm]
> Hinweis: Man löse dieses Beispiel durch Übergang auf eine
> Differentialgleichung 2. Ordnung!
>  Hallo!
>  
> Habe einige Probleme bei o. g. Beispiel!
>  
> Ich kann dieses System ja als 2 Differentialgleichungen 1.
> Ordnung aufschreiben:
>  
> [mm]x^{.}[/mm] = 3*x-y
>  [mm]y^{.}[/mm] = x+y
>  
> Nur wie kann ich diese beiden Differentialgleichungen
> erster Ordnung in eine Differentialgleichung 2. Ordnung
> überführen??
>  


Löse die Gleichung

[mm]x'=3*x-y[/mm]

nach y auf, differenziere diese Lösung
und setze sie in die verbleibende Gleichung

[mm]y' = x+y[/mm]

ein.


> Wäre für jeden Tipp sehr dankbar!
>  
> Lg


Gruss
MathePower

Bezug
                
Bezug
Systeme von Diff-Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:25 So 27.05.2012
Autor: mike1988

Guten Morgen!

Bin nun wie folgt vorgegangen:

Löse die Gleichung [mm] x'=3\cdot{}x-y [/mm] nach y auf : [mm] \mapsto [/mm] y=3*x-x'

differenziere diese Lösung: [mm] \mapsto [/mm] y'=3*x'-x''

und setze sie in die verbleibende Gleichung y' = x+y ein: [mm] \mapsto [/mm] 3*x'-x''= x+y

Nach umformen erhalte ich: x''-3*x'+x=-y

Jetzt habe ich die Differentialgleichung gelöst und als Ergebnis

x = [mm] C_{1}*e^{(\bruch{3}{2}-\bruch{\wurzel{5}}{2})*y} [/mm] + [mm] C_{2}*e^{(\bruch{3}{2}+\bruch{\wurzel{5}}{2})*y}-y-3 [/mm]

Zur Kontrolle habe ich nun das anfängliche System (ohne Überführung) gelöst!

Hier erhalte ich als Ergebnis:

x = [mm] C_{1}*e^{2t}*\vektor{t+1 \\ t}-C_{2}*e^{2t}*\vektor{t \\ t-1} [/mm]

Welches Ergebnis stimmt nun, bzw. wo habe ich einen Fehler??

Danke für eure Hilfe!

Lg

Bezug
                        
Bezug
Systeme von Diff-Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 So 27.05.2012
Autor: schachuzipus

Hallo mike1988,


> Guten Morgen!
>  
> Bin nun wie folgt vorgegangen:
>  
> Löse die Gleichung [mm]x'=3\cdot{}x-y[/mm] nach y auf : [mm]\mapsto[/mm]
> y=3*x-x'
>  
> differenziere diese Lösung: [mm]\mapsto[/mm] y'=3*x'-x'' [ok]
>  
> und setze sie in die verbleibende Gleichung y' = x+y ein:
> [mm]\mapsto[/mm] 3*x'-x''= x+y

Ersetze doch $y$ noch durch $3x-x'$

Dann hast du die recht einfach zu lösende Dgl. $x''-4x'+4x=0$

>  
> Nach umformen erhalte ich: x''-3*x'+x=-y
>  
> Jetzt habe ich die Differentialgleichung gelöst und als
> Ergebnis
>
> x = [mm]C_{1}*e^{(\bruch{3}{2}-\bruch{\wurzel{5}}{2})*y}[/mm] +
> [mm]C_{2}*e^{(\bruch{3}{2}+\bruch{\wurzel{5}}{2})*y}-y-3[/mm]
>  
> Zur Kontrolle habe ich nun das anfängliche System (ohne
> Überführung) gelöst!
>  
> Hier erhalte ich als Ergebnis:
>  
> x = [mm]C_{1}*e^{2t}*\vektor{t+1 \\ t}-C_{2}*e^{2t}*\vektor{t \\ t-1}[/mm]
>  
> Welches Ergebnis stimmt nun, bzw. wo habe ich einen
> Fehler??
>  
> Danke für eure Hilfe!
>  
> Lg

Gruß

schachuzipus


Bezug
                        
Bezug
Systeme von Diff-Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 So 27.05.2012
Autor: MathePower

Hallo mike1988,

> Guten Morgen!
>  
> Bin nun wie folgt vorgegangen:
>  
> Löse die Gleichung [mm]x'=3\cdot{}x-y[/mm] nach y auf : [mm]\mapsto[/mm]
> y=3*x-x'
>  
> differenziere diese Lösung: [mm]\mapsto[/mm] y'=3*x'-x''
>  
> und setze sie in die verbleibende Gleichung y' = x+y ein:
> [mm]\mapsto[/mm] 3*x'-x''= x+y
>  
> Nach umformen erhalte ich: x''-3*x'+x=-y
>  
> Jetzt habe ich die Differentialgleichung gelöst und als
> Ergebnis
>
> x = [mm]C_{1}*e^{(\bruch{3}{2}-\bruch{\wurzel{5}}{2})*y}[/mm] +
> [mm]C_{2}*e^{(\bruch{3}{2}+\bruch{\wurzel{5}}{2})*y}-y-3[/mm]
>  
> Zur Kontrolle habe ich nun das anfängliche System (ohne
> Überführung) gelöst!
>  
> Hier erhalte ich als Ergebnis:
>  
> x = [mm]C_{1}*e^{2t}*\vektor{t+1 \\ t}-C_{2}*e^{2t}*\vektor{t \\ t-1}[/mm]
>  


Diese Lösung ist richtig.


> Welches Ergebnis stimmt nun, bzw. wo habe ich einen
> Fehler??
>  
> Danke für eure Hilfe!
>  
> Lg


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]