matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangente bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Tangente bestimmen
Tangente bestimmen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 21.09.2015
Autor: Rebellismus

Aufgabe
Bestimme die Funktionsgleichung der Tangente am Schaubild von f an der Stelle x. Vereinfache den Differenzenquotienten
mit Polynomdivision bei d) - f) und mit der 3. binomische Formel bei a) - c) und h)

a) [mm] f(x)=x^2 [/mm] für x=1

c) [mm] f(x)=x^2-1 [/mm] für x=-2

d) [mm] f(x9=\bruch{1}{2}x^3 [/mm] für x=2

f) [mm] f(x)=x^3-1 [/mm] für x=1

h) [mm] f(x)=\bruch{1}{x^2} [/mm] für x=1


a)

wie bestimme ich den Funktionsgleichung der Tangente ? Für die tangente gilt:

y(x)=mx+n

die Steigung m bestimme ich mit der Ableitung von f(x)

f'(x)=2x

m=f'(1)=2

wie bestimme ich nun n?

f(1)=y(1)=1

1=2+n

n=-1

ist das so richtig? ich soll noch den differenzenqoutienten vereinfachen. was ist das?
EDIT: ok ich glaube ich weiß was der differenzenquotient ist. aber soll ich den differenzenquotient von f(x) bestimmen oder von der tangente?

        
Bezug
Tangente bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Mo 21.09.2015
Autor: Steffi21

Hallo, du hast die Gleichung für die Tangente [mm] f_t(x)=m*x+n, [/mm] in Aufgabe a) [mm] f_t(x)=2x-1 [/mm] korrekt gelöst, mit dem []Differenzenquotient bestimmst Du die Ableitung an einer Stelle [mm] x_0, [/mm] Steffi

Bezug
                
Bezug
Tangente bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Mo 21.09.2015
Autor: Rebellismus

soll ich den differenzenquotienten der funktion f(x) bestimmen oder von der tangente [mm] f_t(x) [/mm] ?

[mm] f(x)=x^2 [/mm]

[mm] x_1=1 [/mm]
[mm] x_2=3 [/mm]

Ich habe mir einfach 2 variabeln ausgesucht. das kann ich doch machen oder?

Differenzenquotient: [mm] \bruch{f(3)-f(1)}{3-1}= \bruch{9-1}{3-1}=4 [/mm]

wie soll ich das mit der 3 binomischen formel vereinfachen?



Bezug
                        
Bezug
Tangente bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 21.09.2015
Autor: fred97

Nehmen wir uns mal f) vor: [mm] f(x)=x^3-1, [/mm] x=1.

Vielleicht meint der Aufgabensteller folgendes: berechne die Ableitung von f in x=1 nicht über [mm] f'(x)=3x^2, [/mm] sondern über den Differenzenquotienten:

  [mm] \bruch{f(x)-f(1)}{x-1}=\bruch{x^3-1}{x-1}. [/mm]

Polynomdivision liefert:

   [mm] \bruch{f(x)-f(1)}{x-1}=\bruch{x^3-1}{x-1}=x^2+x+1. [/mm]

Also: [mm] \bruch{f(x)-f(1)}{x-1} \to [/mm] 3 für x [mm] \to [/mm] 1.

FRED

Bezug
                                
Bezug
Tangente bestimmen: allgemeine frage
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 21.09.2015
Autor: Rebellismus

eine tangente ist definiert als

y=mx+n

dabei ist m die steigung. was ist n? hat es einen bestimmten namen?

Bezug
                                        
Bezug
Tangente bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mo 21.09.2015
Autor: Herby

Hi,

> eine tangente ist definiert als
>  
> y=mx+n
>  
> dabei ist m die steigung. was ist n? hat es einen
> bestimmten namen?

setz' einmal x=0 ein, was kommt dann heraus und was bedeutet das?

Viele Grüße
[Dateianhang nicht öffentlich] Herby

Bezug
        
Bezug
Tangente bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Mo 21.09.2015
Autor: rabilein1

Du hast die Steigung (durch Ableitung bei x) und du hast einen Punkt, durch den die Tangente geht (x und y der gegebenen Funktion).

Daraus sollte man die Geradengleichung (Tangentengleichung) bestimmen können.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]