matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTangente/ebene/total.Diff'tial
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangente/ebene/total.Diff'tial
Tangente/ebene/total.Diff'tial < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente/ebene/total.Diff'tial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mi 27.05.2009
Autor: nitramGuk

Aufgabe
Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
[mm]P_0 = (2,3,-8)[/mm]
Ges:
a) Anstieg der Tangente an f(x,y) in [mm]P_0[/mm], die parallel zur x-z-Ebene ist.
b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur y-z-Ebene ist.
c) Gleichung der Tangente aus b)
d) Gleichung der Tangentialebene an f(x,y) in [mm]P_0[/mm]
e) Änderung der Funktionswerte, wenn x=2 und y=3 um [mm]\Delta x[/mm] und [mm]\Delta y[/mm] verändert werden.
f) Schätzung der Funktionswerteänderung, wenn x=2 um 10% verringert und y=3 um 5% erhöht wird.
g) Vergleiche f) mit der exakten Änderung.

moin,

a) [mm]f_x(x,y) = 6x+y-4[/mm]
[mm]f_x(2,3)=11[/mm]

b) [mm]f_y(x,y) = x-2y-5[/mm]
[mm]f_y(2,3) = -9[/mm]
Winkel, war doch irgendwas mit Tangens?
Aber keine Ahnung, ob jetzt tan oder arctan, und wie ich da den TR einstellen muss (DEG, RAD, GRA) ?

c) [mm]3 = -9 * 2 +t[/mm]
[mm]t=21[/mm]
[mm]y=-9*x+21[/mm]

d) [mm]z-z_0 = f_x(x_0,y_0)*(x-x_0)+f_y(x_0,y_0)*(y-y_0)[/mm]
[mm]z+8=11*(x-2)-9*(y-3)[/mm]
[mm]z = 11x -9y -3[/mm]

e) hm, also totale Differential setzt sich ja aus [mm] f_x [/mm] und [mm] f_y [/mm] zusammen, und dazu jeweils die Änderung, hier ja allgemein, müsste dann doch sein:
[mm]d f = 11*\Delta x - 9*\Delta y[/mm] ?

f) [mm]x_1=2[/mm]; [mm]y_1=3[/mm]
[mm]\Delta x = -0,2[/mm]; [mm]\Delta y = 0,15[/mm]
[mm]d f = 11*-0,2 + (-9)*0,15 = -3,55[/mm]

g) [mm]x_2=1,8[/mm]; [mm]y_2=3,15[/mm]
[mm]z_2=f(x_2,y_2)=-11,4825[/mm]
[mm]z_2 - z = -11,4825 - (-8) = -3,4825[/mm]

Schätzung: -3,55 <-> Exakt: -3,4825

---

Ok, also sorry, dass das so lang ist, aber steht ja da "inklusive aller Teilaufgaben" ;-)

An sich nur Frage eben zu b) und e), aber wäre natürlich cool, wenn Ihr die Ergebnisse bei den anderen Teilaufgaben bestätigen könntet (oder berichtigen [aufgemerkt] ).

Danke

Frage in keinem anderen Internetforum gestellt!

        
Bezug
Tangente/ebene/total.Diff'tial: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Mi 27.05.2009
Autor: MathePower

Hallo nitramGuk,

> Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
>  [mm]P_0 = (2,3,-8)[/mm]
>  Ges:
>  a) Anstieg der Tangente an f(x,y) in [mm]P_0[/mm], die parallel zur
> x-z-Ebene ist.
>  b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur
> y-z-Ebene ist.
>  c) Gleichung der Tangente aus b)
>  d) Gleichung der Tangentialebene an f(x,y) in [mm]P_0[/mm]
>  e) Änderung der Funktionswerte, wenn x=2 und y=3 um [mm]\Delta x[/mm]
> und [mm]\Delta y[/mm] verändert werden.
>  f) Schätzung der Funktionswerteänderung, wenn x=2 um 10%
> verringert und y=3 um 5% erhöht wird.
>  g) Vergleiche f) mit der exakten Änderung.
>  moin,
>  
> a) [mm]f_x(x,y) = 6x+y-4[/mm]
>  [mm]f_x(2,3)=11[/mm]

[ok]


>  
> b) [mm]f_y(x,y) = x-2y-5[/mm]
>  [mm]f_y(2,3) = -9[/mm]


[ok]


>  Winkel, war doch
> irgendwas mit Tangens?
>  Aber keine Ahnung, ob jetzt tan oder arctan, und wie ich
> da den TR einstellen muss (DEG, RAD, GRA) ?


Es ist hier der arctan zu nehmen, und der TR auf RAD einzustellen.


>  
> c) [mm]3 = -9 * 2 +t[/mm]
>  [mm]t=21[/mm]
>  [mm]y=-9*x+21[/mm]


Die Tangente soll doch parallel zur y-z-Ebene sein,  demnach  x konstant.


>  
> d) [mm]z-z_0 = f_x(x_0,y_0)*(x-x_0)+f_y(x_0,y_0)*(y-y_0)[/mm]
>  
> [mm]z+8=11*(x-2)-9*(y-3)[/mm]
>  [mm]z = 11x -9y -3[/mm]
>  


[ok]


> e) hm, also totale Differential setzt sich ja aus [mm]f_x[/mm] und
> [mm]f_y[/mm] zusammen, und dazu jeweils die Änderung, hier ja
> allgemein, müsste dann doch sein:
>  [mm]d f = 11*\Delta x - 9*\Delta y[/mm] ?


[ok]


>  
> f) [mm]x_1=2[/mm]; [mm]y_1=3[/mm]
>  [mm]\Delta x = -0,2[/mm]; [mm]\Delta y = 0,15[/mm]
>  [mm]d f = 11*-0,2 + (-9)*0,15 = -3,55[/mm]


[ok]

>  
> g) [mm]x_2=1,8[/mm]; [mm]y_2=3,15[/mm]
>  [mm]z_2=f(x_2,y_2)=-11,4825[/mm]
>  [mm]z_2 - z = -11,4825 - (-8) = -3,4825[/mm]
>  
> Schätzung: -3,55 <-> Exakt: -3,4825
>  


[ok]


> ---
>  
> Ok, also sorry, dass das so lang ist, aber steht ja da
> "inklusive aller Teilaufgaben" ;-)
>  
> An sich nur Frage eben zu b) und e), aber wäre natürlich
> cool, wenn Ihr die Ergebnisse bei den anderen Teilaufgaben
> bestätigen könntet (oder berichtien [aufgemerkt] ).
>  
> Danke
>  
> Frage in keinem anderen Internetforum gestellt!


Gruß
MathePower

Bezug
                
Bezug
Tangente/ebene/total.Diff'tial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Do 28.05.2009
Autor: nitramGuk


> Hallo nitramGuk,
>  
> > Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
>  >  [mm]P_0 = (2,3,-8)[/mm]
>  >  Ges:

>  >  b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur
> > y-z-Ebene ist.
>  >  c) Gleichung der Tangente aus b)

>  
>
> >  

> > b) [mm]f_y(x,y) = x-2y-5[/mm]
>  >  [mm]f_y(2,3) = -9[/mm]
>  
>
> [ok]
>  
>
> >  Winkel, war doch

> > irgendwas mit Tangens?
>  >  Aber keine Ahnung, ob jetzt tan oder arctan, und wie
> ich
> > da den TR einstellen muss (DEG, RAD, GRA) ?
>  
>
> Es ist hier der arctan zu nehmen, und der TR auf RAD
> einzustellen.

Danke erstmal soweit, nur kommt da was seltsames raus:

arctan(-9) [RAD] = -1,46
Das wird doch nicht der Winkel in Grad (°) sein?

Hab mal ausprobiert, und mit
arctan(-9) [DEG] = -83,66 kommt das schon eher hin (also natürlich 83,66° )

Oder vielleicht bist du gar nicht von Grad ausgegangen, ich vermute aber, dass ° gefragt sind?

>  
>
> >  

> > c) [mm]3 = -9 * 2 +t[/mm]
>  >  [mm]t=21[/mm]
>  >  [mm]y=-9*x+21[/mm]
>  
>
> Die Tangente soll doch parallel zur y-z-Ebene sein,  
> demnach  x konstant.
>  
>

OK, das verwirrt mich jetzt ;-)
Mir ist zwar jetzt klar, dass ja da unmöglich ein x drin vorkommen kann, aber ich kann ja nicht einfach für das x 2 einsetzen ([mm]x_0[/mm]), dann würde ja nur noch:
[mm]y = 3[/mm] dastehen...

Also vermute ich, dass ich entweder:
1) [mm]y = -9 * z +21[/mm]
oder:
2) [mm]z = -9*y +21[/mm]
nehmen muss.

Da ja die Tangente den Punkt [mm]P_0[/mm] enthalten muss, hab ich mal beide Möglichkeiten getestet:

1) [mm] 3 = -9 * -8 + 21 [/mm]
[mm] 3 = 93 [/mm] [abgelehnt]

2) [mm] -8 = -9*3 +21[/mm]
[mm] -8 = -27+21 = -8[/mm] [bindafuer]

Mein "Gedankengang" so richtig?

>
> Gruß
>  MathePower

Gruß & Danke
nitramGuk


Bezug
                        
Bezug
Tangente/ebene/total.Diff'tial: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Do 28.05.2009
Autor: MathePower

Hallo nitramGuk,

> > Hallo nitramGuk,
>  >  
> > > Geg: [mm]f(x,y)=3x^2+xy-y^2-4x-5y+6[/mm]
>  >  >  [mm]P_0 = (2,3,-8)[/mm]
>  >  >  Ges:
>  
> >  >  b) Anstiegswinkel der Tangente in [mm]P_0[/mm], die parallel zur

> > > y-z-Ebene ist.
>  >  >  c) Gleichung der Tangente aus b)
>  
> >  

> >
> > >  

> > > b) [mm]f_y(x,y) = x-2y-5[/mm]
>  >  >  [mm]f_y(2,3) = -9[/mm]
>  >  
> >
> > [ok]
>  >  
> >
> > >  Winkel, war doch

> > > irgendwas mit Tangens?
>  >  >  Aber keine Ahnung, ob jetzt tan oder arctan, und wie
> > ich
> > > da den TR einstellen muss (DEG, RAD, GRA) ?
>  >  
> >
> > Es ist hier der arctan zu nehmen, und der TR auf RAD
> > einzustellen.
>  
> Danke erstmal soweit, nur kommt da was seltsames raus:
>  
> arctan(-9) [RAD] = -1,46
>  Das wird doch nicht der Winkel in Grad (°) sein?
>  
> Hab mal ausprobiert, und mit
>  arctan(-9) [DEG] = -83,66 kommt das schon eher hin (also
> natürlich 83,66° )
>  
> Oder vielleicht bist du gar nicht von Grad ausgegangen, ich
> vermute aber, dass ° gefragt sind?


Ich bin von Radiant ausgegangen. Natürlich bekommt man dann den Winkel in Radiant heraus, den man dann in Grad umrechnen muß. Dies umgeht man wahrscheinlich damit, dass man den TR auf den Modus DEG einstellt.


>  
> >  

> >
> > >  

> > > c) [mm]3 = -9 * 2 +t[/mm]
>  >  >  [mm]t=21[/mm]
>  >  >  [mm]y=-9*x+21[/mm]
>  >  
> >
> > Die Tangente soll doch parallel zur y-z-Ebene sein,  
> > demnach  x konstant.
>  >  
> >
>
> OK, das verwirrt mich jetzt ;-)
>  Mir ist zwar jetzt klar, dass ja da unmöglich ein x drin
> vorkommen kann, aber ich kann ja nicht einfach für das x 2
> einsetzen ([mm]x_0[/mm]), dann würde ja nur noch:
>  [mm]y = 3[/mm] dastehen...
>  
> Also vermute ich, dass ich entweder:
>  1) [mm]y = -9 * z +21[/mm]
>  oder:
>  2) [mm]z = -9*y +21[/mm]
>  nehmen muss.
>  
> Da ja die Tangente den Punkt [mm]P_0[/mm] enthalten muss, hab ich
> mal beide Möglichkeiten getestet:
>  
> 1) [mm]3 = -9 * -8 + 21[/mm]
>  [mm]3 = 93[/mm] [abgelehnt]
>  
> 2) [mm]-8 = -9*3 +21[/mm]


Hier muß es doch heißen:

[mm]-8=-9*3+\red{19}[/mm]


>  [mm]-8 = -27+21 = -8[/mm] [bindafuer]
>  
> Mein "Gedankengang" so richtig?


Wenn die 21 als eine 19 anzusehen ist, dann ist Dein Gedankengang richtig.


>  
> >
> > Gruß
>  >  MathePower
>
> Gruß & Danke
>  nitramGuk
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]