matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTaylorformel nicht kapiert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Taylorformel nicht kapiert
Taylorformel nicht kapiert < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorformel nicht kapiert: Benötige Hilfe
Status: (Frage) beantwortet Status 
Datum: 22:09 So 01.07.2012
Autor: MatheLoser12

Aufgabe
Bitte berechnen Sie möglichst elegant das Taylorpolynom vom Grad 2 zu der durch die Gleichung y=x² +5x -3
definierten Funktion. Wählen Sie als Entwicklungsstelle die Zahl 1.

Gegeben: f(a+h) [mm] \approx [/mm] f(a) + h*f'(a) + [mm] \bruch{h²}{2}*f''(a) [/mm]



Brauche dringend Hilfe, weil trotz Videos, Internetsuche usw. habe ichs noch nicht richtig durchdrungen.

1 ist gleich a oder?
was ist h?
Kann mir jemand die Zahlen eintragen?
Was hat es mit Fakultät auf sich ab Grad 3?

Vielen Dank für die Hilfe

        
Bezug
Taylorformel nicht kapiert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 So 01.07.2012
Autor: MathePower

Hallo MatheLoser12,


> Bitte berechnen Sie möglichst elegant das Taylorpolynom
> vom Grad 2 zu der durch die Gleichung y=x² +5x -3
>  definierten Funktion. Wählen Sie als Entwicklungsstelle
> die Zahl 1.
>
> Gegeben: f(a+h) [mm]\approx[/mm] f(a) + h*f'(a) +
> [mm]\bruch{h²}{2}*f''(a)[/mm]

>


[mm]f(a+h) \approx f(a) + h*f'(a) + \bruch{h^{2}}{2}*f''(a)[/mm]


>
> Brauche dringend Hilfe, weil trotz Videos, Internetsuche
> usw. habe ichs noch nicht richtig durchdrungen.
>  
> 1 ist gleich a oder?


Ja.


>  was ist h?
>  Kann mir jemand die Zahlen eintragen?


Es ist doch

[mm]f\left(x\right)=f\left(a+\left(x-a\right)\right)=f\left(a+h\right)[/mm]

Damit ist h=x-a.


>  Was hat es mit Fakultät auf sich ab Grad 3?

>


Das sind die weiteren Glieder der Taylorreihe.

Diese werden als Restglied zusammengefasst.

Das Restglied dient zu Fehlerabschätzung.


> Vielen Dank für die Hilfe


Gruss
MathePower

Bezug
                
Bezug
Taylorformel nicht kapiert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mo 02.07.2012
Autor: MatheLoser12

Was trage ich nun für eine Zahl für h ein?

Bezug
                        
Bezug
Taylorformel nicht kapiert: Antwort
Status: (Antwort) fertig Status 
Datum: 03:07 Di 03.07.2012
Autor: MathePower

Hallo MatheLoser12,


> Was trage ich nun für eine Zahl für h ein?


Für h trägst Du jetzt x-a bzw.  x-1,
wobei a=1 die Entwicklungsstelle ist.


Gruss
MathePower

Bezug
                                
Bezug
Taylorformel nicht kapiert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Di 03.07.2012
Autor: MatheLoser12

danke

Bezug
        
Bezug
Taylorformel nicht kapiert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 So 01.07.2012
Autor: Al-Chwarizmi


> Bitte berechnen Sie möglichst elegant das Taylorpolynom
> vom Grad 2 zu der durch die Gleichung y=x² +5x -3
>  definierten Funktion. Wählen Sie als Entwicklungsstelle
> die Zahl 1.


Da die gegebene Funktion selbst eine quadratische
Funktion ist, wird sie durch ihr Taylorpolynom exakt
reproduziert, das heißt, das Restglied verschwindet.

Für eine "elegante" Lösung kannst du einfach anstelle
von x den Ausdruck (1+h) in die Funktion einsetzen:

    $\ f(x)\ =\ f(1+h)\ =\ [mm] (1+h)^2+5*(1+h)-3$ [/mm]

und dann rechts ausrechnen und zusammenfassen.
Eine andere elegante Möglichkeit liefert das mehr-
stufige Hornerschema, falls du dieses kennst.

LG   Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]