matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTaylorpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Taylorpolynom
Taylorpolynom < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Sa 05.06.2010
Autor: peter_k

Aufgabe
Bestimmen Sie die Taylorpolynome vom Grad 0,1,2,3 der Funktion

f: [mm] \mathbb{R}^2 \rightarrow \mathbb{R}: [/mm] (x,y) [mm] \mapsto exp(-x^2-y^2) [/mm]

im Punkt (0,0).

Hallo,

also das ist ja eigentlich nur Formel anwenden einstzen etc. Ich habe das mal gemacht, aber ich glaube ich mache was falsch....ich schreib mal ganz genau auf, was ich bisher gemacht habe:

Taylorpolynom der Ordnung 0:

[mm] \sum\limits_{|\alpha| \le 0}\bruch{D^0 f(0,0)}{0!}((x,y)-(0,0))^\alpha=\sum\limits_{|\alpha| \le 0}\bruch{exp(0-0)}{1}=1 [/mm]

Ergibt auch graphisch Sinn, ich denke das wird erstmal richtig sein, oder?

Dann TP erster Ordnung:

[mm] \sum\limits_{|\alpha| \le 1}\bruch{D^\alpha f(0,0)}{\alpha!}((x,y)-(0,0))^\alpha=1+ \bruch{D^1f(0,0)}{1}(x,y)^1=1+0 [/mm] (da die erste Ableitung [mm] -2xexp(-x^2-y^2), [/mm] bzw. [mm] -2yexp(-x^2-y^2 [/mm] ja für f(0,0) gleich 0 ist.).

Dann wäre ja das zweite Taylorpolynom wieder gleich 1. Wo ist hier der Haken?

Vielen Dank schonmal für Hinweise!!

GRUß
Peter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Sa 05.06.2010
Autor: MathePower

Hallo [mm] peter_k, [/mm]

> Bestimmen Sie die Taylorpolynome vom Grad 0,1,2,3 der
> Funktion
>  
> f: [mm]\mathbb{R}^2 \rightarrow \mathbb{R}:[/mm] (x,y) [mm]\mapsto exp(-x^2-y^2)[/mm]
>  
> im Punkt (0,0).
>  Hallo,
>
> also das ist ja eigentlich nur Formel anwenden einstzen
> etc. Ich habe das mal gemacht, aber ich glaube ich mache
> was falsch....ich schreib mal ganz genau auf, was ich
> bisher gemacht habe:
>  
> Taylorpolynom der Ordnung 0:
>  
> [mm]\sum\limits_{|\alpha| \le 0}\bruch{D^0 f(0,0)}{0!}((x,y)-(0,0))^\alpha=\sum\limits_{|\alpha| \le 0}\bruch{exp(0-0)}{1}=1[/mm]
>  
> Ergibt auch graphisch Sinn, ich denke das wird erstmal
> richtig sein, oder?


Ja.


>  
> Dann TP erster Ordnung:
>  
> [mm]\sum\limits_{|\alpha| \le 1}\bruch{D^\alpha f(0,0)}{\alpha!}((x,y)-(0,0))^\alpha=1+ \bruch{D^1f(0,0)}{1}(x,y)^1=1+0[/mm]
> (da die erste Ableitung [mm]-2xexp(-x^2-y^2),[/mm] bzw.
> [mm]-2yexp(-x^2-y^2[/mm] ja für f(0,0) gleich 0 ist.).
>  
> Dann wäre ja das zweite Taylorpolynom wieder gleich 1. Wo
> ist hier der Haken?


Kein Haken, da die partiellen Ableitungen im Punkt (0,0) verschwinden.


>  
> Vielen Dank schonmal für Hinweise!!
>  
> GRUß
>  Peter
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruss
MathePower

Bezug
                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Sa 05.06.2010
Autor: peter_k

Aber dann verstehe ich das nicht....ich dachte je höher der Grad des Taylorpolynoms, desto besser nähert sich der Graph dem Entwicklungspunkt an?

Für das TP zweiter Ordnung hab ich dann :

[mm] T_{(0,0}^{(2)}=1-2(x^2-y^2) [/mm] und der Graph nähert sich auch schon sehr gut an f(0,0) an.

Bilde ich dann

[mm] T_{(0,0)}^{(3)}= \sum\limits_{|\alpha| \le 3}\bruch{D^\alpha f(0,0)}{\alpha!}((x,y)-(0,0))^\alpha=1-2(x^2+y^2)+\bruch{1}{12}(0) [/mm]

dann das wäre ja wieder das gleiche Taylorpolynom wie davor...wenn das richtig ist, ist ja die Aufgabe irgendwo ein bisschen witzlos.

Gruß
Peter

Bezug
                        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Sa 05.06.2010
Autor: kevin314

Das Phänomen kannst Du auch bei der Taylorentwicklung von $sin(x)$ im Ursprung (eindimensional) beobachten, die Ableitungen geraden Grades sind ja $+/-sin(x)$ also Null in $x=0$. jedes zweite Glied verschwindet also, die Entwicklung wird also nur alle zwei Grade besser, das macht im "Unendlichen" ja aber nichts! Vielleicht war das ja der Sinn der Aufgabe?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]