matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikTeilbarkeit beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Logik" - Teilbarkeit beweisen
Teilbarkeit beweisen < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Mi 27.11.2013
Autor: pc_doctor

"Wenn (mindestens) eine von zwei ganzen Zahlen n und m nicht durch 3 teilbar, dann ist auch die Summe oder die Differenz von n und m nicht durch 3 teilbar."

Hallo , ich soll diese Aussage mittels Kontraposition beweisen.

Also die Aussage beziehe ich auf die Logik und sage:
a -> b ( a impliziert b )

die Kontraposition ist [mm] \neg [/mm] b [mm] ->\neg [/mm] a

Also wenn die Summe oder die Differenz von n und m durch 3 teilbar ist , dann ist mindestens eine von zwei ganzen Zahlen n und m durch 3 teilbar.

Also sei die Summe von n und m:

[mm] \bruch{n+m}{3} [/mm]  , das kann ich anders aufschreiben:
[mm] \bruch{n}{3} [/mm] + [mm] \bruch{m}{3} [/mm]

Ich bin mir ziemlich sicher , dass das zu trivial ist , was ich gemacht habe , aber damit habe ich doch gezeigt , dass mindestens n und m durch 2 teilbar ist , indem ich die Summe anders , aber semantisch äquivalent aufgeschrieben habe.

Wenn das zu einfach ist , was ist dann der richtige Weg ?


Danke im Voraus.


        
Bezug
Teilbarkeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Mi 27.11.2013
Autor: wieschoo

Du hast "mindestens eine" falsch negiert.

Die ursprüngliche Aussage mit den Bezeichnung
[mm]z_1[/mm] Zahl 1 ist durch 3 teilbar
[mm]z_2[/mm] Zahl 2 ist durch 3 teilbar
[mm]s[/mm] Summe ist durch 3 teilbar
ist

[mm]\neg z_1 \vee \neg z_2 \quad\rightarrow\quad \neg s[/mm]  !

Wende jetzt Kontraposition auf den Ausdruck an.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]