matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTeilmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Teilmengen
Teilmengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmengen: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 09:23 Mi 24.11.2004
Autor: Reaper

geg.:  [mm] \cap [/mm] n [mm] \in \IN [/mm] ]0,1/n[  [mm] \subseteq \emptyset [/mm]

Hier will ich zeigen dass der Durchschnitt des Intervalls ]0,1/n[ in der leeren Menge liegt. Man muss also beweisen dass der Durchschnitt kein Element enthält, was ich mit einem Widerspruchsbeweis zeigen kann. Ich nehme also an dass es ein x>0 in meiner Menge gibt, sodass gilt:
[mm] \exists [/mm] x [mm] \in \IR+ \forall [/mm] n  [mm] \in \IN [/mm] x  [mm] \in [/mm] ]0,1/n[

So und wenn ich jetzt für x beispielsweise 100 einsetze dann bekomme ich
]0,1/100[ heraus. Da 100[ dass 100 nicht mehr im Intervall liegt merke ich dass die Anhame ein Blödsinn war und kann daraus schließen dass die Durchschnittsmenge die leere Menge ist. Kann mir jemand sagen ob meine Überlegung wirklich richtig ist?

        
Bezug
Teilmengen: Nullfolge Intervallschachtellu
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 24.11.2004
Autor: baddi

Ich denke die Stichworte zu Deiner Aufgabe müssen
Nullfolge Intervallschachtellung sein

Deine Lösung könnte auch richtig sein. Damit zeigst du im Prinzip das ein beliebiges 1/n n aus N nicht in dem Intervall ist.

Anschaulich klar das dann nur noch die Null drin bleibt... aber gilt das dannn schon ?

Ich denke du musst damit argumentieren dass 1/n Nullfolge ist und somit kein 1/n > 0 für n gegen unendlich existiert aber auch 1/n nie 0 wird.

Damit ist dann klar das nur die 0 im Intervall bleibt.

CU Sebastian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]