matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Termumformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Termumformung
Termumformung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termumformung: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 15:50 Fr 20.03.2009
Autor: michas-welt

Aufgabe
Bringen Sie den Term in die Form [mm] a\cdot\ [/mm] x+b und geben Sie a bzw. b an.
[mm]\bruch{3}{8}-\bruch{2}{3}x+(1-\bruch{5}{6}x)\cdot(-\bruch{1}{2})[/mm]

Ich komme einfach nicht auf die vorgegebene Lösung von a= [mm] -\bruch{1}{4} [/mm] und b= [mm] -\bruch{1}{8}. [/mm]
Wenn ich die Klammern auflöse komme ich auf

[mm] \bruch{3}{8} [/mm] - [mm] \bruch{2}{3} [/mm] x [mm] -\bruch{1}{2} [/mm] + [mm] \bruch{5}{12} [/mm] x

An dem Punkt komme ich dann nicht mehr weiter. Wie kommt man auf das Ergebniss?

Kurz zu meinem Hintergrund: Ich bin gerade dabei bei einem Fernlerninstitut das Abitur nachzuholen. Nachdem ich Mathe jetzt 1,5 Jahre in der Ecke habe liegenlassen, muss ich jetzt doch ran. Und da fehlt es leider nach 12 Jahren Schulabstinenz an elementarem Grundwissen.

Ich danke euch schon im Voraus für eure Hilfe.

Achja!!! Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Fr 20.03.2009
Autor: schachuzipus

Hallo michas-welt und herzlch [willkommenmr]

> Bringen Sie den Term in die Form [mm]a\cdot\[/mm] x+b und geben Sie
> a bzw. b an.
>  
> [mm]\bruch{3}{8}-\bruch{2}{3}x+(1-\bruch{5}{6}x)\cdot(-\bruch{1}{2})[/mm]
>  
> Ich komme einfach nicht auf die vorgegebene Lösung von a=
> [mm]-\bruch{1}{4}[/mm] und b= [mm]-\bruch{1}{8}.[/mm]
>  Wenn ich die Klammern auflöse komme ich auf
>  
> [mm]\bruch{3}{8}[/mm] - [mm]\bruch{2}{3}[/mm] x [mm]-\bruch{1}{2}[/mm] + [mm]\bruch{5}{12}[/mm]  x [ok]

>  
> An dem Punkt komme ich dann nicht mehr weiter. Wie kommt
> man auf das Ergebniss?

Fasse die Terme mit x und die ohne x zusammen:

[mm] $=\left(\blue{-\frac{2}{3}x+\frac{5}{12}x}\right)+\left(\red{\frac{3}{8}-\frac{1}{2}}\right)$ [/mm]

x ausklammern

[mm] $=\left(\blue{-\frac{2}{3}+\frac{5}{12}}\right)\cdot{}x [/mm] \ + \ [mm] \left(\red{\frac{3}{8}-\frac{1}{2}}\right)$ [/mm]

Nun musst du in beiden Klammern die Brüche addieren.


Dazu mache sie gleichnamig, überlege dir, wie ein gemeinsamer Nenner (am besten der Hauptnenner) aussieht und erweitere eintsprechend!

Geh's mal an ...

>  
> Kurz zu meinem Hintergrund: Ich bin gerade dabei bei einem
> Fernlerninstitut das Abitur nachzuholen. Nachdem ich Mathe
> jetzt 1,5 Jahre in der Ecke habe liegenlassen, muss ich
> jetzt doch ran. Und da fehlt es leider nach 12 Jahren
> Schulabstinenz an elementarem Grundwissen.
>  
> Ich danke euch schon im Voraus für eure Hilfe.
>  
> Achja!!! Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Termumformung: Jetzt gehts
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 Fr 20.03.2009
Autor: michas-welt

Hallo schachuzipus,

vielen Dank für Deine schnelle Hilfe. So gehts dann auch. Ich wollte wohl die ganze Zeit Äpfel mit Birnen verheiraten. Manchmal steht man eben auf dem Schlauch.

tausend Dank und LG

Micha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]