matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Termumformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Termumformung
Termumformung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 03.01.2010
Autor: cheezy

Aufgabe
Kürzen Sie die Brüche soweit als möglich

[mm] p^{3} [/mm] - [mm] q^{3} [/mm] / p-q

So ich habe das jetzt so gemacht

[mm] p^{3} [/mm] - [mm] q^{3} [/mm] / p-q =      (p-q) * (p+q) * (p+q)
                                                      (p-q)

ich habe nenner und im zähler die beiden (p-q) durchgestrichen also bleibt bei beiden die Zahl 1

dann bleibt nur noch (p+q) * (p+q)

[mm] p^{2} [/mm] + pq +pq+ [mm] q^{2} [/mm]

aber die richtige lösung ist
[mm] p^{2}+pq+ q^{2} [/mm]

und meine lösung ist
[mm] p^{2} [/mm] + pq +pq+ [mm] q^{2} [/mm]


        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 So 03.01.2010
Autor: schachuzipus

Hallo cheezy,

leider verwendest du den Formeleditor nicht, so dass deine Darstellung nur schwer lesbar ist...

> Kürzen Sie die Brüche soweit als möglich
>  
> [mm]p^{3}[/mm] - [mm]q^{3}[/mm] / p-q

Setze Klammern oder verwende den Formeleditor, um Brüche vernünftig darzustellen, richtig kannst du es so eintippen:

\bruch{p^3-q^3}{p-q}, das liefert [mm] $\bruch{p^3-q^3}{p-q}$ [/mm]

>  
> So ich habe das jetzt so gemacht
>  
> [mm]p^{3}[/mm] - [mm]q^{3}[/mm] / p-q =      (p-q) * (p+q) * (p+q)
>                                                        
> (p-q)

Ich interpretiere das als [mm] $\frac{(p-q)\cdot{}(p+q)\cdot{}(p+q)}{p-q}$ [/mm] ?!

Nun das stimmt nicht, multipliziere den Zähler aus und duz kommst nicht wieder auf [mm] $p^3-q^3$ [/mm]

>  
> ich habe nenner und im zähler die beiden (p-q)
> durchgestrichen also bleibt bei beiden die Zahl 1
>  
> dann bleibt nur noch (p+q) * (p+q)
>  
> [mm]p^{2}[/mm] + pq +pq+ [mm]q^{2}[/mm]
>  
> aber die richtige lösung ist
>  [mm]p^{2}+pq+ q^{2}[/mm]
>  
> und meine lösung ist
>  [mm]p^{2}[/mm] + pq +pq+ [mm]q^{2}[/mm]

Führe mal eine Polynomdivision durch:

[mm] $(p^3-q^3):(p-q)=p^2+pq...$ [/mm]
[mm] $\underline{-(p^3-p^2q)}$ [/mm]  
[mm] $p^2q-q^3$ [/mm]
[mm] $\underline{-(p^2q-pq^2)}$ [/mm]
[mm] $pq^2-q^3$ [/mm]
...

Den Rest kriegst du hin ...

LG

schachuzipus

Bezug
                
Bezug
Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 So 03.01.2010
Autor: cheezy

Ich verstehe nicht warum dieser Bruch hier falsch ist

$ [mm] \frac{(p-q)\cdot{}(p+q)\cdot{}(p+q)}{p-q} [/mm] $

Was muss den eigentlich im Zähler stehen?

und ich verstehe nicht diese Polynomdivision muss ich diese Methode anwenden oder gibt es keinen anderen Weg



Bezug
                        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 03.01.2010
Autor: schachuzipus

Hallo nochmal,

> Ich verstehe nicht warum dieser Bruch hier falsch ist
>  
> [mm]\frac{(p-q)\cdot{}(p+q)\cdot{}(p+q)}{p-q}[/mm]

Wenn du den Zähler ausmultiplizierst, so erhältst du

[mm] $\frac{(p-q)(p^2+2pq+q^2)}{p-q}=\frac{p^3\red{+p^2q-pq^2}-q^3}{p-q}\neq\frac{p^3-q^3}{p-q}$ [/mm]

>  
> Was muss den eigentlich im Zähler stehen?

Nun, das was in der Lösung steht: [mm] $p^3-q^3=(p-q)\cdot{}(p^2+pq+q^2)$ [/mm]

>  
> und ich verstehe nicht diese Polynomdivision muss ich diese
> Methode anwenden oder gibt es keinen anderen Weg

Mit Schulmethoden fällt mir keiner ein, zumal du in den letzten threads einige Polynomdivisionen gerechnet hast, wenn ich mich gerade nicht mit den usern vertue :-)

Die PD liefert dir genau den gewünschten Restterm ...

Und du solltest konkreter sagen, was du an der PD nicht verstehst, ich habe es doch weitgehend schon hingeschrieben ...

Gruß

schachuzipus  


Bezug
                                
Bezug
Termumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 So 03.01.2010
Autor: cheezy

Danke, Schachzipus ich habs hinbekommen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]