matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTopologische Räume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Topologische Räume
Topologische Räume < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mo 19.04.2010
Autor: mathestuden

Aufgabe
D1

Geben Sie für folgende Situationen Beispiele an und begründen Sie, warum die Beispiele die geforderten Eigenschaften besitzen.

(1) Eine nicht steitige Abbildung zwischen zwei topologischen Räumen.
(2) Einen topologischen Raum (X, U ) mit einer Teilmenge [mm]M \subset X [/mm], die sowohl abgeschlossen als auch offen ist.
(3) Eine echte Teilmenge M von [mm]\IR[/mm], deren Abschluss in  

Hallo Mathefreunde,

die 1. Teilaufgabe ist bereits gelöst. Zunächt wollte ich aber nur zur 2. eine Frage stellen. Ich habe im Vornherein gelesen, dass die Menge [mm]\left[0,1\right]\times\IR[/mm] sowohl offen als auch geschlossen sein soll.

Welche Überlegung muss man nachvollziehen,um  auf diese Menge zu kommen ? Ist [mm]\left[0,1\right]\times\IR[/mm] die Menge von der aus in einen nichtnegative Zahl abgebildet wird, um eine Metrik d zu erhalten?

Vielen Dank im Voraus

        
Bezug
Topologische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 07:10 Di 20.04.2010
Autor: fred97


> D1
>  
> Geben Sie für folgende Situationen Beispiele an und
> begründen Sie, warum die Beispiele die geforderten
> Eigenschaften besitzen.
>  
> (1) Eine nicht steitige Abbildung zwischen zwei
> topologischen Räumen.
>  (2) Einen topologischen Raum (X, U ) mit einer Teilmenge [mm]M \subset X [/mm],
> die sowohl abgeschlossen als auch offen ist.
>  (3) Eine echte Teilmenge M von [mm]\IR[/mm], deren Abschluss in
> Hallo Mathefreunde,
>  
> die 1. Teilaufgabe ist bereits gelöst. Zunächt wollte ich
> aber nur zur 2. eine Frage stellen. Ich habe im Vornherein
> gelesen, dass die Menge [mm]\left[0,1\right]\times\IR[/mm] sowohl
> offen als auch geschlossen sein soll.

So ist das Unsinnig !

Ist z.B. X = [mm] \IR^2 [/mm] versehen mit der euklidischen Metrik, so ist  [mm]\left[0,1\right]\times\IR[/mm]  in dieser Top. abgeschlossen, aber nicht offen.

Betrachtest Du daggegen X=  [mm]\left[0,1\right]\times\IR[/mm]  mit irgendeiner Topologie, so ist   [mm]\left[0,1\right]\times\IR[/mm]  in dieser Topologie sowohl offen als auch abgeschlossen


Allgemein gilt: ist X ein top. Raum, so sind X und [mm] \emptyset [/mm] sowohl offen als auch abgeschlossen.

FRED




>
> Welche Überlegung muss man nachvollziehen,um  auf diese
> Menge zu kommen ? Ist [mm]\left[0,1\right]\times\IR[/mm] die Menge
> von der aus in einen nichtnegative Zahl abgebildet wird, um
> eine Metrik d zu erhalten?
>  
> Vielen Dank im Voraus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]