matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraTorsion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Torsion
Torsion < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Torsion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 So 17.06.2007
Autor: Moe007

Aufgabe
Sei R ein Hauptidealring und M ein R-Modul.
Zeige, dass [mm] M/M_{tor} [/mm] keine Torsion hat.

Hallo,
ich komme bei der oberen Aufgabe überhaupt nicht zurecht, weil ich nicht genau weiß, wie ich das zeigen soll.
Ich habe eine Frage zur Angabe. Bedeutet "keine Torsion" = torsionsfrei?
Mein Problem ist, dass ich mit dem gegebenen nicht genau weiß, wie ich anfangen soll.
Wenn R ein Hauptidealring ist, dann sind alle Ideal darin Hauptideale.
Und [mm] M_{tor} [/mm] ist so definiert { [mm] x\in [/mm] M | [mm] \exists [/mm] c [mm] \in [/mm] R - {0}: cx = 0 }

Ich bin mir auch nicht sicher, was [mm] M/M_{tor} [/mm] genau ist. Ist [mm] M/M_{tor} [/mm] die Menge aller x [mm] \in [/mm] M, wo [mm] \forall [/mm] c [mm] \in [/mm] R - {0} : cx [mm] \not= [/mm] 0 ?
Wenn man dann zeigen soll, dass [mm] M/M_{tor} [/mm] keine Torsion hat, muss man dann zeigen, dass [mm] M/M_{tor} [/mm] = 0?
Denn ich habe im Bosch Buch gelesen, dass T [mm] \subset [/mm] M torsionsfrei ist, wenn T = 0.

Ich hoffe, dass mir jemand dabei helfen kann, da mir noch vieles unklar ist. Danke!

Viele Grüße,
Moe



        
Bezug
Torsion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Mo 18.06.2007
Autor: angela.h.b.


> Sei R ein Hauptidealring und M ein R-Modul.
>  Zeige, dass [mm]M/M_{tor}[/mm] keine Torsion hat.
>  Hallo,
>  ich komme bei der oberen Aufgabe überhaupt nicht zurecht,
> weil ich nicht genau weiß, wie ich das zeigen soll.
>  Ich habe eine Frage zur Angabe. Bedeutet "keine Torsion" =
> torsionsfrei?

Hallo,

davon würde ich doch stark ausgehen...

Zum Beweis würde ich mir ein Torsionselement aus [mm] M/M_{tor} [/mm] hernehmen und zeigen, daß es =Null ist.

Sei also [mm] m+M_{tor} [/mm] Torsionselement.

Dann gibt es ein von Null verschiedenens Element [mm] a\in [/mm] R mit

[mm] 0=M_{tor}=a(m+M_{tor}) [/mm]

Hieraus mußt Du dann Deine Schlüsse ziehen.

Gruß v. Angela

Bezug
                
Bezug
Torsion: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 08:15 Di 19.06.2007
Autor: statler


> > Sei R ein Hauptidealring und M ein R-Modul.
>  >  Zeige, dass [mm]M/M_{tor}[/mm] keine Torsion hat.
>  >  Hallo,
>  >  ich komme bei der oberen Aufgabe überhaupt nicht
> zurecht,
> > weil ich nicht genau weiß, wie ich das zeigen soll.
>  >  Ich habe eine Frage zur Angabe. Bedeutet "keine
> Torsion" =
> > torsionsfrei?
>  
> Hallo,
>  
> davon würde ich doch stark ausgehen...
>  
> Zum Beweis würde ich mir ein Torsionselement aus [mm]M/M_{tor}[/mm]
> hernehmen und zeigen, daß es = Null ist.
>  
> Sei also [mm]m+M/M_{tor}[/mm] Torsionselement.

Das Torsionselement hat doch die Form [mm]m+M_{tor}[/mm]...

> Dann gibt es ein von Null verschiedenenes Element
> [mm]a+M/M_{tor}[/mm] mit

... und dieses Element soll aus dem Ring sein: a [mm] \in [/mm] R

> [mm]0=M_{tor}=(m+M/M_{tor})(a+M/M_{tor})[/mm]

[mm]\overline{0} = M_{tor} = a*(m+M_{tor}) := am+M_{tor}[/mm]

> Hieraus mußt Du dann Deine Schlüsse ziehen.
>  
> Gruß v. Angela

Gruß von Dieter


Bezug
        
Bezug
Torsion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Di 19.06.2007
Autor: angela.h.b.

Hallo,

ich habe gesehen, daß ich die Hälfte der Fragen zu beantworten vergessen habe. Sie sind jedoch fürs Verständnis dessen, was Du tun mußt,  notwendig.

>  
> Ich bin mir auch nicht sicher, was [mm]M/M_{tor}[/mm] genau ist.

Das ist traurig.

[mm] M/M_{tor}:=\{x+M_{tor}| x\in M\}. [/mm]


> Wenn man dann zeigen soll, dass [mm]M/M_{tor}[/mm] keine Torsion
> hat, muss man dann zeigen, dass [mm]M/M_{tor}[/mm] = 0?
>  Denn ich habe im Bosch Buch gelesen, dass T [mm]\subset[/mm] M
> torsionsfrei ist, wenn T = 0.

Mal abgesehen davon, daß Du wohl [mm] T=\{0\} [/mm] meinst, kann ich mir kaum vorstellen, daß das da so steht.

Ich nehme mal an, daß da ungefähr so etwas steht:

Wenn M ein torsionsfreier Modul ist, besteht die Menge T, welche genau die Torsionselemente von M enthält, nur aus der 0.

Auf Deine Aufgabe bezogen hast Du also festzustellen, ob die Menge der Torsionselemente von [mm] M/M_{tor} [/mm] nur die Null enthält.
Hierfür solltest Du zunächst in Dich gehen und darüber meditieren, welches die Null in [mm] M/M_{tor} [/mm] ist.

Gruß v. Angela


Bezug
                
Bezug
Torsion: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 19.06.2007
Autor: Moe007

Hallo Angela/Statler,
vielen Dank für eure Hilfe. Ich hab mal versucht, eine Lösung auszuarbeiten.
Sei r [mm] \in [/mm] R- {0} und m [mm] \in [/mm] M. Sei n [mm] \in M/M_{tor} [/mm] die Restklasse von m [mm] \in [/mm] M.
Sei nun rn = 0, also rm [mm] \in M_{tor}. [/mm] Also ist arm = 0 für ein a [mm] \in [/mm] R-{0}.
Es gilt ar [mm] \not= [/mm] 0, da R nullteilerfrei ist.
Also ist m [mm] \in M_{tor} [/mm] und damit n = 0 [mm] \in M/M_{tor} [/mm] (Nullrestklasse)

Stimmt das so?

Viele Grüße
Moe

Bezug
                        
Bezug
Torsion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Mi 20.06.2007
Autor: angela.h.b.


> Stimmt das so?

Hallo,

so wie ich es sehe, ist es richtig.

Ich finde die Darstellung an manchen Stellen nicht so gelungen, weil man als Lesender zuviel nachdenken muß. Dein Gedankengang soll sich aus dem Text erschließen.

Ich würde auch die Restklassen und Ringelemente optisch unterscheiden und geschickter benennen, z.B. hier:

>  Sei [...] m [mm]\in[/mm] M. Sei n [mm]\in M/M_{tor}[/mm] die
> Restklasse von m [mm]\in[/mm] M.

Mit "sei [mm] m\in [/mm] M und sei [mm] \overline{m}:=m+M_{tor}\in M/M_{tor}" [/mm] fährt man besser.


Sei m [mm] \in [/mm] M und sei [mm] \overline{m}:=m+M_{tor} [/mm] Torsionselement von [mm] M/M_{tor}. [/mm]
Dann gibt es ein

> r [mm]\in[/mm] R- {0}

mit

>  Sei nun rn = 0

[mm] r\overline{m}=\overline{0} [/mm]
>, also rm [mm]\in M_{tor}.[/mm]
Also gibt es ein [mm] a\in \IR [/mm] \ [mm] \{0\} [/mm] mit

> arm = 0

0=a(rm)=(ar)m

>  Es gilt ar [mm]\not=[/mm] 0, da R nullteilerfrei ist.
>  Also ist m [mm]\in M_{tor}[/mm] und damit

[mm] \overline{m}=\overline{0}. [/mm]
Also ist [mm] M/M_{tor} [/mm] torsionsfrei.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]