matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisTotales Dfferenzial
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Totales Dfferenzial
Totales Dfferenzial < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totales Dfferenzial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Di 13.06.2006
Autor: stray

Aufgabe
Ein zylinderisches Stahlstück mit einer Höhe von 10 cm und einem Radius von 4 cm nimmt durch Wärmebehandlung in der Höhe m 0,01 cm und im Radius um 0,02 cm zu. Verwenden Sie das totale Differenzial, um die ungefähre Volumenänderung zu berechnen.

Mit der einfachen Schulmathematik und der Volumenberechnung habe ich ein Ergebnis raus
(5,547 cm³).

Der Knackpunkt ist aber nunmal das "totale Differenzial" !!.
Und genau da scheitere ich, ich hab keinen Plan wie man hier
die Theorie in die Praxis umsetzt bei diesem Thema.

Kann mir jemand mit "einfachen" Worten erklären was man schrittweise tun kann/muss ?

Vielen Dank

        
Bezug
Totales Dfferenzial: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mi 14.06.2006
Autor: MatthiasKr

Hallo stray,

> Ein zylinderisches Stahlstück mit einer Höhe von 10 cm und
> einem Radius von 4 cm nimmt durch Wärmebehandlung in der
> Höhe m 0,01 cm und im Radius um 0,02 cm zu. Verwenden Sie
> das totale Differenzial, um die ungefähre Volumenänderung
> zu berechnen.
>  Mit der einfachen Schulmathematik und der
> Volumenberechnung habe ich ein Ergebnis raus
> (5,547 cm³).
>  
> Der Knackpunkt ist aber nunmal das "totale Differenzial"
> !!.
>  Und genau da scheitere ich, ich hab keinen Plan wie man
> hier
>  die Theorie in die Praxis umsetzt bei diesem Thema.
>  
> Kann mir jemand mit "einfachen" Worten erklären was man
> schrittweise tun kann/muss ?

die ableitung (bzw. das totale differential im mehrdimensionalen) dienen ja als lineare annäherung der ursprungsfunktion.
es geht also bei dieser aufgabe darum, dass neue Volumen nicht konkret auszurechnen sondern mithilfe des differentials zu approximieren:

Deine Volumenfunktion lautet:

[mm] $V=h\pi r^2$ [/mm]

Ist das Volumen in [mm] $(h_0,r_0)$ [/mm] gegeben, kannst du die Werte in der Umgebung  wie folgt approximieren:

[mm] $V(h,r)=V(h_0,r_0) [/mm] + [mm] \nabla V(h_0,r_0) \cdot (h-h_0,r-r_0)$ [/mm]

das ist nichts als die definition der diffbarkeit.

Gruß
Matthias




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]