matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikTransformation von Dichten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Transformation von Dichten
Transformation von Dichten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation von Dichten: Wo liegt der Fehler?
Status: (Frage) beantwortet Status 
Datum: 19:12 Di 01.04.2014
Autor: RussellFrege

Aufgabe
Gegeben sei die Zufallsvariable X ~ [mm] Exp(\lambda) [/mm] und [mm] Y:=e^X. [/mm]
(i) Bestimmen sie Dichte und Verteilungsfkt. von Y.
(ii) Bestimmen sie E(Y) sowohl mithilfe der Tranormationsformel für Erwartungswerte, als auch dirket. Für welche Werte von [mm] \lambda [/mm] existiert der Erwartungswert?

Bei mir kommt bem 1. Teil ein unmögliches Ergebnis raus.
[mm] u(x)=e^x<=>u^-1(y)=log(y) [/mm]
(d/dy)*u^-1(y)=1/y
Mit der Transformationsformel gilt also: [mm] f_Y(y)=\lambda*e^{-\lambda*log(y)}*(1/y)*1_([1, \infty)) [/mm] (y)(Der letzte Faktor wird nicht richtig dargestellt, es handelt sich um die Indikjatorfkt. von y zwischen 1 und unendlich.
Also: [mm] \lambda*e^{-\lambda}*1_([1,\infty))(y) [/mm]
Das kann aber nicht sein, da das Integral aur R nicht 1 ergibt.
Wo ist also der Fehler?

Nur für Erst-Poster
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Transformation von Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Di 01.04.2014
Autor: luis52

Moin RusselFrege

[willkommenmr]

Wo ist das Problem?

[mm] $1=\int_{1}^{\infty}\lambda\cdot{}e^{-\lambda\cdot{}log(y)}\cdot{}(1/y)\,dy$ [/mm] ...


Bezug
                
Bezug
Transformation von Dichten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 01.04.2014
Autor: RussellFrege

Danke!
Weil ich doch das log(y) im Exponent von e als y vor den Term schreiben kann, so dass es sich mit dem y wegkürzt. Dann bleibt die Konstante [mm] \lambda*e^{-\lambda} [/mm] stehen, und wenn ich die integriere, kommt da doch nicht 1 raus...Oder wie kommst du auf diesen Wert?

Bezug
                        
Bezug
Transformation von Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Di 01.04.2014
Autor: schachuzipus

Hallo,

> Danke!
> Weil ich doch das log(y) im Exponent von e als y vor den
> Term schreiben kann, so dass es sich mit dem y wegkürzt.

Nein, das kürzt sich nicht weg ...

Es ist [mm]e^{-\lambda\cdot{}\ln(y)}=\left(e^{\ln(y)}\right)^{-\lambda}=y^{-\lambda}[/mm]

> Dann bleibt die Konstante [mm]\lambda*e^{-\lambda}[/mm] stehen,

Nein ... Wie soll das denn herauskommen?

> und
> wenn ich die integriere, kommt da doch nicht 1 raus...Oder
> wie kommst du auf diesen Wert?

Rechne nochmal nach ...

Gruß

schachuzipus

Bezug
                                
Bezug
Transformation von Dichten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Di 01.04.2014
Autor: RussellFrege

Achja, stimmt, hast du recht. Also insgesamt dann [mm] \lambda*y^{-\lambda -1} [/mm] ?

Bezug
                                        
Bezug
Transformation von Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Mi 02.04.2014
Autor: luis52


> Achja, stimmt, hast du recht. Also insgesamt dann
> [mm]\lambda*y^{-\lambda -1}[/mm] ?

Wie das? [verwirrt]

Die Dichte von [mm] $e^X$ [/mm] ist  $ [mm] f_Y(y)=\lambda\cdot{}e^{-\lambda\cdot{}\log(y)}\cdot{}(1/y)\cdot{}1_{[1, \infty)}(y)$, [/mm] Punkt!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]