matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenTransformationsmatrizen von En
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Transformationsmatrizen von En
Transformationsmatrizen von En < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsmatrizen von En: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 So 26.05.2019
Autor: Dr.Frankenstein

Aufgabe
Seien V ein endlich erzeugter Vektorraum über einem Körper K und f ein Endo-
morphismus von V . Zeigen Sie, daß äquivalent sind
(i) Fur je zwei Basen A und B von V gilt Mf,A,A = Mf,B,B.
(ii) Es gibt ein λ ∈ K mit f = λidV .

Hallo!

Leider habe ich Probleme diese Aufgabe zu verstehen und verstehe nicht wie ich diese Äquivalenz zeigen soll...
Ich weiß, dass ein Endomorphismus bedeutet, dass es eine lineare Abbildung ist von V nach W, wobei V und W gleich sind. Leider fällt mir nicht mehr zu dieser Augabe ein, daher wäre ich sehr dankbar, falls mir jemand einen Ansatz liefern könnte.

LG


(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)


        
Bezug
Transformationsmatrizen von En: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 So 26.05.2019
Autor: hippias

Tip: Zeige zuerst, dass i) aus ii) folgt.

Ansonsten gilt die schöne Regel: keine Idee, keine Punkte.

Bezug
        
Bezug
Transformationsmatrizen von En: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Mo 27.05.2019
Autor: fred97


> Seien V ein endlich erzeugter Vektorraum über einem
> Körper K und f ein Endo-
>  morphismus von V . Zeigen Sie, daß äquivalent sind
>  (i) Fur je zwei Basen A und B von V gilt Mf,A,A = Mf,B,B.
>  (ii) Es gibt ein λ ∈ K mit f = λidV .
>  Hallo!
>
> Leider habe ich Probleme diese Aufgabe zu verstehen und
> verstehe nicht wie ich diese Äquivalenz zeigen soll...
>  Ich weiß, dass ein Endomorphismus bedeutet, dass es eine
> lineare Abbildung ist von V nach W, wobei V und W gleich
> sind. Leider fällt mir nicht mehr zu dieser Augabe ein,
> daher wäre ich sehr dankbar, falls mir jemand einen Ansatz
> liefern könnte.
>  
> LG
>  
>
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)
>  

So einfach wie Hippias mach ich es mir nicht. Sei $n= [mm] \dim [/mm] V$ und [mm] E_n [/mm] die $n [mm] \times [/mm] n$ - Einheitsmatrix.

Schauen wir und die Implikation $( ii) [mm] \Rightarrow [/mm] (i)$ an: es ist also $f= [mm] \lambda id_V$ [/mm] mit einem $ [mm] \lambda \in [/mm] K.$ Ist nun B eine Basis von V, so ist leicht zu sehen, dass [mm] M_{f,B,B}=\lambda E_n [/mm] ist.  Begründe dies !

Zur Implikation $( i) [mm] \Rightarrow [/mm] (ii)$. Sei [mm] $B=\{b_1,...., b_n\}$ [/mm] eine Basis von V. Dann ist auch [mm] $A=\{-b_1,...., b_n\}$ [/mm] eine Basis von V.

Zeige nun mit [mm] M_{f,B,B}=M_{f,A,A}, [/mm] dass es ein [mm] \alpha_1 \in [/mm] K gibt mit [mm] f(b_1)= \alpha_1 b_1. [/mm]

Genauso sieht man: es ex. [mm] \alpha_2,...., \alpha_n \in [/mm] K mit [mm] f(b_j)=\alpha_j b_j [/mm] für j=2,...,n.

Fazit: [mm] M_{f,B,B}= diag(\alpha_1,....,\alpha_n). [/mm]

Zeige nun Du: [mm] \alpha_1 [/mm] = .... = [mm] \alpha_n. [/mm]

Mit [mm] \lambda:= \alpha_1 [/mm] ist dann [mm] M_{f,B,B}= \lambda E_n. [/mm]

Damit folgt: $f= [mm] \lambda id_V.$ [/mm]

Bezug
                
Bezug
Transformationsmatrizen von En: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:39 Di 28.05.2019
Autor: Dr.Frankenstein

Vielen Dank für deine Antwort, ich werde dein Konstrukt nutzen und daraus meine Letzendliche Antwort zu Formen.
Bei Rückfragen melde ich mich wieder.

Liebe Grüße > > Seien V ein endlich erzeugter Vektorraum über einem

> > Körper K und f ein Endo-
>  >  morphismus von V . Zeigen Sie, daß äquivalent sind
>  >  (i) Fur je zwei Basen A und B von V gilt Mf,A,A =
> Mf,B,B.
>  >  (ii) Es gibt ein λ ∈ K mit f = λidV .
>  >  Hallo!
> >
> > Leider habe ich Probleme diese Aufgabe zu verstehen und
> > verstehe nicht wie ich diese Äquivalenz zeigen soll...
>  >  Ich weiß, dass ein Endomorphismus bedeutet, dass es
> eine
> > lineare Abbildung ist von V nach W, wobei V und W gleich
> > sind. Leider fällt mir nicht mehr zu dieser Augabe ein,
> > daher wäre ich sehr dankbar, falls mir jemand einen Ansatz
> > liefern könnte.
>  >  
> > LG
>  >  
> >
> > (Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.)
>  >  
> So einfach wie Hippias mach ich es mir nicht. Sei [mm]n= \dim V[/mm]
> und [mm]E_n[/mm] die [mm]n \times n[/mm] - Einheitsmatrix.
>  
> Schauen wir und die Implikation [mm]( ii) \Rightarrow (i)[/mm] an:
> es ist also [mm]f= \lambda id_V[/mm] mit einem [mm]\lambda \in K.[/mm] Ist
> nun B eine Basis von V, so ist leicht zu sehen, dass
> [mm]M_{f,B,B}=\lambda E_n[/mm] ist.  Begründe dies !
>  
> Zur Implikation [mm]( i) \Rightarrow (ii)[/mm]. Sei [mm]B=\{b_1,...., b_n\}[/mm]
> eine Basis von V. Dann ist auch [mm]A=\{-b_1,...., b_n\}[/mm] eine
> Basis von V.
>  
> Zeige nun mit [mm]M_{f,B,B}=M_{f,A,A},[/mm] dass es ein [mm]\alpha_1 \in[/mm]
> K gibt mit [mm]f(b_1)= \alpha_1 b_1.[/mm]
>  
> Genauso sieht man: es ex. [mm]\alpha_2,...., \alpha_n \in[/mm] K mit
> [mm]f(b_j)=\alpha_j b_j[/mm] für j=2,...,n.
>  
> Fazit: [mm]M_{f,B,B}= diag(\alpha_1,....,\alpha_n).[/mm]
>  
> Zeige nun Du: [mm]\alpha_1[/mm] = .... = [mm]\alpha_n.[/mm]
>  
> Mit [mm]\lambda:= \alpha_1[/mm] ist dann [mm]M_{f,B,B}= \lambda E_n.[/mm]
>  
> Damit folgt: [mm]f= \lambda id_V.[/mm]


Bezug
                
Bezug
Transformationsmatrizen von En: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:35 Mi 29.05.2019
Autor: tobit09

Hallo Fred,

> Zeige nun mit [mm]M_{f,B,B}=M_{f,A,A},[/mm] dass es ein [mm]\alpha_1 \in[/mm]
> K gibt mit [mm]f(b_1)= \alpha_1 b_1.[/mm]

Daran scheitere ich im Falle der Charakteristik 2 des Körpers K. Kannst du diesen Teil genauer ausführen?

Ich selbst habe die Aufgabe übrigens anders gelöst:
Gegeben eine Basis [mm] $(b_1,\ldots,b_n)$ [/mm] und [mm] $i,j\in\{1,\ldots,n\}$ [/mm] mit [mm] $i\neq [/mm] j$ habe ich die Basis [mm] $(a_1,\ldots,a_n)$ [/mm] mit [mm] $a_i:=b_i+b_j$ [/mm] und [mm] $a_k:=b_k$ [/mm] für [mm] $k\neq [/mm] i$ betrachtet.

Übrigens ist der Fall n=0 (sowohl bei deinem Weg als auch bei meinem) gesondert zu behandeln.

Viele Grüße
Tobias

Bezug
                        
Bezug
Transformationsmatrizen von En: Antwort
Status: (Antwort) fertig Status 
Datum: 07:43 Mi 29.05.2019
Autor: fred97


> Hallo Fred,
>  
> > Zeige nun mit [mm]M_{f,B,B}=M_{f,A,A},[/mm] dass es ein [mm]\alpha_1 \in[/mm]
> > K gibt mit [mm]f(b_1)= \alpha_1 b_1.[/mm]

Hallo Tobias,


>  Daran scheitere ich im
> Falle der Charakteristik 2 des Körpers K. Kannst du diesen
> Teil genauer ausführen?

Du hast recht. An diesen Fall hab ich nicht gedacht. Ich denke drüber nach.


>  
> Ich selbst habe die Aufgabe übrigens anders gelöst:
>  Gegeben eine Basis [mm](b_1,\ldots,b_n)[/mm] und
> [mm]i,j\in\{1,\ldots,n\}[/mm] mit [mm]i\neq j[/mm] habe ich die Basis
> [mm](a_1,\ldots,a_n)[/mm] mit [mm]a_i:=b_i+b_j[/mm] und [mm]a_k:=b_k[/mm] für [mm]k\neq i[/mm]
> betrachtet.

Das ist eine gute Idee !


>  
> Übrigens ist der Fall n=0 (sowohl bei deinem Weg als auch
> bei meinem) gesondert zu behandeln.

Muß man den Fall [mm] $\dim [/mm] V=0$ wirklich behandeln ?

Gruß FRED

>  
> Viele Grüße
>  Tobias


Bezug
                                
Bezug
Transformationsmatrizen von En: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Mi 29.05.2019
Autor: tobit09

Hallo Fred,

vielen Dank für deine prompte Antwort, die meine Frage geklärt hat. :-)


> > Übrigens ist der Fall n=0 (sowohl bei deinem Weg als auch
> > bei meinem) gesondert zu behandeln.
>  
> Muß man den Fall [mm]\dim V=0[/mm] wirklich behandeln ?

Zumindest sollte man aus meiner Sicht explizit darauf hinweisen, dass der Fall dim V=0 vergleichsweise einfach sei und daher nicht näher behandelt wird. Dann kann man mit "Sei nun [mm] $\dim V\neq0$." [/mm] die Kernargumentation einleiten.

Viele Grüße
Tobias

Bezug
        
Bezug
Transformationsmatrizen von En: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:07 Mi 29.05.2019
Autor: ChopSuey

Hallo,

ich habe die Diskussion über eigene Lösungsansätze versteckt. Zum einen hat sie den Thread zugemüllt mit künstlicher Aufregung, zum anderen drohte das Ganze auszuarten.

Eigene Lösungsansätze sind gemäß unserer Etiquette erwünscht. Es steht trotzdem jedem User zu jeder Zeit frei auch auf Fragen ohne Lösungsansätze zu antworten.

LG,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]