matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTransformationssatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Transformationssatz
Transformationssatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 02.02.2005
Autor: franceblue

Hallo Ich soll das Integral über der Fläche B ausrrechen mit Hilfe von Polarkoordinaten

B= {(x,y)    / [mm] x^2+y^2<=9, [/mm] x>=0 y>=0}

und dann habe ich noch f(x,y) = [mm] (x^2+y^2)^4 [/mm] gegeben?

Wie bringe ich die drei jetzt unter einen Hut?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Transformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 02.02.2005
Autor: Paulus

Hallo franceblue

[willkommenmr]

> Hallo Ich soll das Integral über der Fläche B ausrrechen
> mit Hilfe von Polarkoordinaten
>  
> [mm] $B={(x,y)|x^2+y^2<=9, x>=0 y>=0}$ [/mm]
>  

Hier musst du eigentlich nur überlegen, wie denn diese Fläche aussieht und wie man die ganze Fläche überstreichen kann, wenn man Polarkoordinaten einführt.

Ich denke, das ist ein Viertelkreis im 1. Quadranten mit Radius 3.

Damit schliesse ich, dass [mm] $\varphi$ [/mm] von 0 bis [mm] $\bruch{\pi}{2}$ [/mm] läuft, und $r_$ von $0_$ bis $3_$. Das sind dann also die Integrationsgrenzen.

> und dann habe ich noch f(x,y) = [mm](x^2+y^2)^4[/mm] gegeben?
>  
> Wie bringe ich die drei jetzt unter einen Hut?
>  

Du ersetzt jetzt einfach in deiner Funktion $x_$ durch [mm] $r*\cos(\varphi)$ [/mm] und $y_$ durch [mm] $r*\sin(\varphi)$ [/mm]
[mm] $x^2+y^2$ [/mm] wird dann wohl gerade zu [mm] $r^2$ [/mm] ;-)

[mm] $dx\,dy_$ [/mm] ist noch durch [mm] $r*dr\,d\varphi$ [/mm] zu ersetzen ($r_$ ist ja die Funktionaldeterminante beim Uebergang zu Polarkoordinaten).

Kannst du das mal ausführen und uns deine Rechnung zeigen? :-)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]