matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenTransitivität Nachweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Relationen" - Transitivität Nachweisen
Transitivität Nachweisen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transitivität Nachweisen: Fehlerhafter Nachweis?
Status: (Frage) beantwortet Status 
Datum: 17:07 Mi 27.02.2013
Autor: Peeter123

Hallo,

Ich habe hier in einem Buch als Beispiel die Ungleichheits-Relation stehen:


[mm] M=\IZ [/mm]

R [mm] \subseteq [/mm] MxM

Seien x, y [mm] \in [/mm] M, dann gilt:  [mm] (x,y)\in [/mm] R [mm] \gdw [/mm] x [mm] \not= [/mm] y


In dem Buch steht, dass diese Relation nicht transitiv sei. Die Begründung:
Die Relation R ist nicht transitiv, denn es gilt: [mm] 2\not=3 [/mm] und [mm] 3\not=2, [/mm] aber nicht [mm] 2\not=2. [/mm]


Ist diese Begründung nicht falsch?

Die Definition der Transitivität lautet doch:
Für alle a, b, c [mm] \in [/mm] M gilt: (a,b) [mm] \in [/mm] R [mm] \wedge [/mm] (b, c) [mm] \in [/mm] R [mm] \Rightarrow [/mm] (a,c) [mm] \in [/mm] R.

In der Definition ist die Rede von 3 verschiedenen Elementen. Im Nachweis aus dem Buch werden jedoch nur 2 Elemente verwendet und nicht 3 verschiedene.

Meiner Meinung nach ist die ungleichrelation nämlich transitiv.
Meine Begrüng für die Transitivität wäre:
Die Relation R ist transitiv, weil für alle x, y, z [mm] \in [/mm] R gilt: Wenn x [mm] \not= [/mm] y ist und y [mm] \not= [/mm] z ist, dann ist x [mm] \not= [/mm] z.



Habe ich recht oder übersehe ich da etwas?




        
Bezug
Transitivität Nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Mi 27.02.2013
Autor: meili

Hallo,

> Hallo,
>  
> Ich habe hier in einem Buch als Beispiel die
> Ungleichheits-Relation stehen:
>  
>
> [mm]M=\IZ[/mm]
>  
> R [mm]\subseteq[/mm] MxM
>  
> Seien x, y [mm]\in[/mm] M, dann gilt:  [mm](x,y)\in[/mm] R [mm]\gdw[/mm] x [mm]\not=[/mm] y
>  
>
> In dem Buch steht, dass diese Relation nicht transitiv sei.
> Die Begründung:
>  Die Relation R ist nicht transitiv, denn es gilt: [mm]2\not=3[/mm]
> und [mm]3\not=2,[/mm] aber nicht [mm]2\not=2.[/mm]
>  
>
> Ist diese Begründung nicht falsch?

Diese Begründung ist richtig.
Es wird ein Gegenbeispiel angeführt.

>  
> Die Definition der Transitivität lautet doch:
>  Für alle a, b, c [mm]\in[/mm] M gilt: (a,b) [mm]\in[/mm] R [mm]\wedge[/mm] (b, c)
> [mm]\in[/mm] R [mm]\Rightarrow[/mm] (a,c) [mm]\in[/mm] R.
>  
> In der Definition ist die Rede von 3 verschiedenen
> Elementen. Im Nachweis aus dem Buch werden jedoch nur 2
> Elemente verwendet und nicht 3 verschiedene.

Es werden 3 Elemente aufgeführt. Es wird aber nicht gefordert, dass es
verschiedene Elemente sind. Wäre das so, müsste das ausdrücklich
in der Definition stehen.
Was aber in der Definition steht: Es muss für alle a,b,c [mm] $\in$ [/mm] M
gelten; dann auch für gleiche.

>
> Meiner Meinung nach ist die ungleichrelation nämlich
> transitiv.
>  Meine Begrüng für die Transitivität wäre:
>  Die Relation R ist transitiv, weil für alle x, y, z [mm]\in[/mm] R
> gilt: Wenn x [mm]\not=[/mm] y ist und y [mm]\not=[/mm] z ist, dann ist x
> [mm]\not=[/mm] z.

Nein, das ist keine stichhaltige Begründung.
x kann ja alles mögliche sein, nur nicht  = y.
Ebenso z.
Deshalb kann der Fall eintreten x = z.

>  
>
>
> Habe ich recht oder übersehe ich da etwas?
>  
>
>  

Gruß
meili

Bezug
                
Bezug
Transitivität Nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Mi 27.02.2013
Autor: Peeter123

Hallo meili,

> Es werden 3 Elemente aufgeführt. Es wird aber nicht
> gefordert, dass es
>  verschiedene Elemente sind. Wäre das so, müsste das
> ausdrücklich
>  in der Definition stehen.
>  Was aber in der Definition steht: Es muss für alle a,b,c
> [mm]\in[/mm] M
>  gelten; dann auch für gleiche.
>

Bei Definitionen dieser Art dachte ich bisher immer, dass (hier im Beispiel) a, b und c verschieden sein müssten....Gut, dass ich hier nochmal nachgefragt habe.

Danke für deine Hilfe ;)


Bezug
                        
Bezug
Transitivität Nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Mi 27.02.2013
Autor: Sax

Hi,

hast du dir mal (mit deiner Methode) überlegt, ob die Gleichheitsrelation transitiv ist ?

Gruß Sax.

Bezug
                                
Bezug
Transitivität Nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mi 27.02.2013
Autor: Peeter123


> hast du dir mal (mit deiner Methode) überlegt, ob die
> Gleichheitsrelation transitiv ist ?


Hallo,

Inzwischen ist es mir klar geworden. Aber selbst mit meiner (falschen) Methode anfangs (in der a, b und verschieden sein mussten), würde ich bereits darauf kommen, dass die Gleichheitsrelation transitiv ist.

(a=b [mm] \wedge [/mm] b=c) [mm] \Rightarrow [/mm]  a=c.

[mm] \gdw (a\not=b \vee b\not=c) \vee [/mm] a=c   Und dies ist für alle a, b, c [mm] \in [/mm] M wahr (Wenn M jetzt die Menge der Relation sei mit MxM).

Kann man sich auch darüber klar machen, dass es nur 5 verschiedene Fälle gibt:

a=b=c
[mm] a\not=b\not=c [/mm]
Nur a und b sind gleich
Nur b und c sind gleich
Nur a und c sind gleich

Für alle 5 Fälle ist die obige Aussage wahr.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]