matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Trigonometrische Gleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Trigonometrische Gleichung
Trigonometrische Gleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Fr 17.11.2006
Autor: feku

Ich bin beim bearbeiten einer Aufgabe auf die Gleichung
[mm] cos(\alpha)=0,04+0,2sin(\alpha) [/mm] gestoßen. Wie kann ich die Gleichung nach [mm] \alpha [/mm] auflösen? Ich weiß nicht, wie ich mit sinus und cosinus in einer Gleichung umgehen muss.

        
Bezug
Trigonometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Fr 17.11.2006
Autor: Leopold_Gast

Wegen der [mm]2 \pi[/mm]-Periodizität genügt es, die Lösungen im Intervall [mm]- \pi \leq \alpha \leq \pi[/mm] zu berechnen und [mm]2 \pi[/mm]-periodisch fortzusetzen.

Für [mm]0 \leq \alpha \leq \pi[/mm] kannst du [mm]\sin{\alpha} = \sqrt{1 - \cos^2{\alpha}}[/mm] schreiben, und für [mm]- \pi \leq \alpha \leq 0[/mm] gilt: [mm]\sin{\alpha} = - \sqrt{1 - \cos^2{\alpha}}[/mm]

Wenn du dann [mm]t = \cos{\alpha}[/mm] substituierst, bekommst du eine Wurzelgleichung in [mm]t[/mm]. Diese löst man durch Isolieren der Wurzel und quadrieren. Du mußt wegen der Definition von [mm]t[/mm] dabei nur Lösungen suchen mit [mm]-1 \leq t \leq 1[/mm]. Beachte, daß das Quadrieren einer Gleichung keine Äquivalenzumformung ist. Die scheinbaren [mm]t[/mm]-Lösungen müssen also an der originalen Wurzelgleichung auf Korrektheit überprüft werden. Und aus den korrekten [mm]t[/mm]-Lösungen bekommst du dann die zugehörigen [mm]\alpha[/mm]-Lösungen. Auch hier muß man aufpassen: Neben der Taschenrechnerlösung [mm]\alpha_{\text{TR}}[/mm] ist auch [mm]- \alpha_{\text{TR}}[/mm] eine Cosinuslösung.

Bezug
                
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Sa 18.11.2006
Autor: feku

Vielen Dank für die Hilfe! Genau das [mm]\sin{\alpha} = \sqrt{1 - \cos^2{\alpha}}[/mm] hat mir gefehlt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]