matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikTschebyscheff Ungleichung und Gesetz der Großen Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Tschebyscheff Ungleichung und Gesetz der Großen Zahlen
Tschebyscheff Ungleichung und Gesetz der Großen Zahlen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff Ungleichung und Gesetz der Großen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Mo 15.03.2004
Autor: dancingestrella

Hallo,
ich schreibe morgen eine Klausur über Stochastik.
Mein Problem ist, dass ich die Tschebyscheff Ungleichung formelmäßig zwar kenne und das Gesetz der Großen Zahlen auch, aber ich blicke nicht ganz durch was man damit aussagen kann. So weiß ich nicht wo der Unterschied der beiden Formeln liegt und ich kann es auch nicht in Worten fassen, was sie aussagen.
Kann mir das bitte jemand erklären?
gruß, dancingestrella

        
Bezug
Tschebyscheff Ungleichung und Gesetz der Großen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Mo 15.03.2004
Autor: Stefan

Hallo!

Eine Folge [mm](X_n)_{n \in \IN}[/mm] auf einem Wahrscheinlichkeitsraum [mm](\Omega,{\cal A},P)[/mm] genügt dem schwachen Gesetz der großen Zahlen, wenn für alle [mm]\varepsilon>0[/mm] folgendes gilt:

[mm]\lim\limits_{n \to \infty} P\left( \vert \frac{1}{n} \sum_{i=1}^n (X_i - \mbox{E}[X_i])\vert \ge \varepsilon \right) = 0[/mm],

d.h. wenn die Folge  [mm]\left(\frac{1}{n} \sum_{i=1}^n (X_i - \mbox{E}[X_i])\right)_{n \in \IN}[/mm] stochastisch gegen [mm]0[/mm] konvergiert.

Die Tschebyscheffsche Ungleichung sagt aus, dass für alle [mm]\varepsilon>0[/mm] die folgende Beziehung gilt:

[mm]P(|X-\mbox{E}[X]|\ge \varepsilon) \le \frac{1}{\varepsilon^2} \mbox{Var}[X][/mm].

Der Zusammenhang ist nun zum Beispiel wie folgt gegeben:

Behauptung: Eine Bernoullische Versuchsfolge genügt dem schwachen Gesetz der großen Zahlen.

Hierbei nehme ich an, dass [mm]P(X_i=1)=p[/mm] und daher [mm]P(X_i=0)=1-p[/mm] gilt. Daher gilt: [mm]E[X_i]=p[/mm].

Zu zeigen ist also, dass folgendes gilt: Für alle [mm]\varepsilon>0[/mm] gilt:

[mm]\lim\limits_{n \to \infty} P\left( \vert \frac{1}{n} \sum_{i=1}^n (X_i - p )\vert \ge \varepsilon \right) = 0[/mm],

also:

[mm]\lim\limits_{n \to \infty} P\left( \vert \frac{1}{n} \sum_{i=1}^n X_i - p \vert \ge \varepsilon\right) = 0[/mm].

Nun gilt aber:

[mm]\mbox{E}\left[\frac{1}{n} \sum_{i=1}^n X_i \right] = \frac{1}{n}\cdot np = p[/mm]

und

[mm]\mbox{Var}\left[\frac{1}{n} \sum_{i=1}^n X_i \right] = \frac{1}{n^2}\cdot np(1-p) = \frac{p(1-p)}{n}[/mm].

Nach der Tschebyscheffschen Ungleichung gilt also:

[mm]P\left( \vert \frac{1}{n} \sum_{i=1}^n (X_i - p)\vert \ge \varepsilon \right) \le \frac{p(1-p)}{n\varepsilon^2}[/mm],

woraus die Behauptung folgt.

Man sieht also (ganz allgemein): Die Tschebyscheffsche Ungleichung dient dazu nachzuweisen, dass eine Folge von Zufallsvariablen dem schwachen Gesetz der großen Zahlen genügt.

Als Abschätzung mit konkreten Zahlen ist sie relativ wertlos, da die Abschätzung in der Regel zu grob ist.

Ich hoffe ich konnte dir etwas weiterhelfen. Leider muss ich jetzt weg. Vielleicht kann dir ja dann bei Nachfragen jemand anders weiterhelfen.

Liebe Grüße
Stefan

Bezug
                
Bezug
Tschebyscheff Ungleichung und Gesetz der Großen Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 Mi 17.03.2004
Autor: dancingestrella

Hallo!

Nun ich habe mir einen Zettel und einen Stift genommen, alle Ungleichungen aufgeschrieben und ihre Aussagen in eigene Worte gefasst. Mithilfe ein paar Lernbücher ging das dann auch.
Aber Danke für deine Erklärungen... Ich werde sie mir im wacheren Zustand nochmal verinnerlichen. Ich es eher flüchtig gelesen und für deine Erklärung brauche ich etwas mehr Zeit. Summenformeln kenne ich zwar, aber es dauert immer noch etwas länger bis ich den Überblick habe.
Aber danke!
Die Klausur war übrigens ok.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]