matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUmformen, Summe, Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Umformen, Summe, Integral
Umformen, Summe, Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformen, Summe, Integral: Umformen
Status: (Frage) beantwortet Status 
Datum: 18:33 Di 17.04.2012
Autor: BerlinerKindl

Aufgabe
Zeigen Sie, dass [mm] \overline{SZ(f)}(Obersumme) [/mm] = [mm] \underline{SZ(f)}(Untersumme) [/mm] + [mm] \bruch{1}{n} [/mm] gilt.

Ich habe ein kleines Problem mit der Aufgabe, da ich irgendwie nicht wirklich weiß, was ich machen kann.
Als erstes habe ich mir die Definitionen rausgesucht
[mm] \summe_{k=1}^{n} [/mm] sup f(x) * [mm] (x_{k}-x_{k-1}) [/mm] ....
Nun müsste ich ja irgendwie eine Indexverschiebung hinbekommen, damit ich  auf [mm] \summe_{k=1}^{n} [/mm] inf f(x) * [mm] (x_{k}-x_{k-1})+\bruch{1}{n} [/mm] komme, aber wie ?? Oder fehlen mir davor noch ein paar Schritte ??

Danke, für die Hilfe...

        
Bezug
Umformen, Summe, Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Di 17.04.2012
Autor: leduart

Hallo
Das gilt sicher nicht allgemein, hast du eine bestimmte Funktion?
was ist SZ(f)? Deine Def scheint mir auch falsch sup(f(x)) über welche x etwa?
poste die exakte Aufgabe!
Gruss leduart

Bezug
                
Bezug
Umformen, Summe, Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Di 17.04.2012
Autor: BerlinerKindl

Aufgabe
Dachte, dass das allgemein gilt, sorry...
Gegeben ist f : I = [0,1] [mm] \to [/mm] R mit f(x) = [mm] x^{2}. [/mm] Wir betrachten die Zerlegung Z [mm] \in [/mm] Z(0,1) mit äquidistanten Stützstellen und Feinheit h = [mm] \bruch{1}{n}, n\in \IN+. [/mm]
Zeigen Sie nun, dass [mm] \overline{SZ(f)} [/mm] = [mm] \underline{SZ(f)}+\bruch{1}{n} [/mm] gilt.
Das ist echt alles diesmal =)

Das ist echt alles diesmal =).
ja und das mit dem sup(f(x)) und inf(f(x)), wobei x [mm] \in I_{k} [/mm] ist.
Hoffentlich habe ich jetzt alles.

Bezug
                        
Bezug
Umformen, Summe, Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:16 Mi 18.04.2012
Autor: leduart

Hallo
schreib die differenz der ober und untersumme mal auf. für [mm] f(x)=x^2 [/mm] ist das jeweilige inf und sup im intervall ja bekannt.
dann solltest du bei der Grenze 1 auf 1/n kommen, gilt aber eben nicht für jedes f und nicht für jedes Intervall I
im Zweifelsfall rechne und zeichne mal für n=2 und n=4

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]