matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenUmformungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Umformungen
Umformungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Sa 24.02.2007
Autor: Leni-chan

Aufgabe
Zeigen Sie, dass die Fkt. [mm] f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)} [/mm] durch die Gleichung [mm] y=f_{4}(x)=x-4+\bruch{9}{x+2} [/mm] beschrieben werden kann.

Ich komme hier einfach nicht weiter. Ich gehe von der 1. Fkt. aus und versuche diese Umzuformen. Dann komme ich gerade soweit, dass ich (x+4) kürzen kann und dann noch [mm] f(x)=\bruch{(x-1)^2}{x+2} [/mm] habe.
Aber ich weiß einfach nicht, wie ich dann weiter machen soll. Eine Hilfe wäre hier wirklich nicht schlecht und vielleicht auch generell ein Tipp, wie ich hier in Zukunft bei solchen Aufgaben die Lösung finde.
Danke schon mal.

LG Leni-chan

        
Bezug
Umformungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 24.02.2007
Autor: Bastiane

Hallo Leni-chan!

> Zeigen Sie, dass die Fkt.
> [mm]f_{4}(x)=\bruch{(x-1)^2(x+4)}{(x+4)(x+2)}[/mm] durch die
> Gleichung [mm]y=f_{4}(x)=x-4+\bruch{9}{x+2}[/mm] beschrieben werden
> kann.
>  Ich komme hier einfach nicht weiter. Ich gehe von der 1.
> Fkt. aus und versuche diese Umzuformen. Dann komme ich
> gerade soweit, dass ich (x+4) kürzen kann und dann noch
> [mm]f(x)=\bruch{(x-1)^2}{x+2}[/mm] habe.
> Aber ich weiß einfach nicht, wie ich dann weiter machen
> soll. Eine Hilfe wäre hier wirklich nicht schlecht und
> vielleicht auch generell ein Tipp, wie ich hier in Zukunft
> bei solchen Aufgaben die Lösung finde.

Keine Ahnung, ob es einfacher geht, aber eine Sache, die immer funktionieren müsste, ist Polynomdivision. Multipliziere dazu Zähler und Nenner aus und mache dann Polynomdivision. Du hast dann:

[mm] (x^3+2x^2-7x+4):(x^2+6x+8) [/mm]

Da erhältst du dann x-4 plus einen Restterm. Der Restterm ist: 9x+36, also musst du diesen Teil auch noch durch [mm] (x^2+6x+8) [/mm] teilen. Wenn du das etwas anders schreibst, kannst du es so kürzen, dass das rauskommt, was du brauchst: [mm] \frac{9x+36}{x^2+6x+8}=\frac{9(x+4)}{(x+4)(x+2)}=\frac{9}{x+2}. [/mm]

Und ich sehe gerade, dass du auch nach dem Kürzen von (x+4), wie du es hier gemacht hast, einfach noch Polynomdivision machen kannst. Das dürfte wohl einfacher sein, aber für den allgemeinen Fall, wenn du vorher nichts kürzen kannst, kannst du es so machen, wie oben beschrieben. :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]