matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Umgang mit quadr. Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Umgang mit quadr. Funktionen
Umgang mit quadr. Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umgang mit quadr. Funktionen: Erklärung gesucht
Status: (Frage) beantwortet Status 
Datum: 18:10 Fr 18.03.2011
Autor: scoolio

Aufgabe
eine Halle mit 6 metern breite und 4.5 m höhe soll mit einem parabelförmigen dach überbaut werden. In welchem Winkel müssen die Träger des Daches angebracht werden?



Die aufgabe konnte soweit gelöst werden. Aber zu dem weg habe ich Fragen:

a) um die variablen a und b zu finden muss ich die funktionen an den stellen x+3 und x-3 addieren. Ich würde gerne wissen warum das geht und was "passiert" um es zu verstehen.

b) die konstante c (also 4.5) gibt ja die Höhe der funktion an wenn x null ist. Kann ich das nur so nachweisen oder wie kann man die zuordnung der 4.5 und der variable c besser erklären?

c) die erste ableitung gibt mir die steigung an einem beliebigen punkt, deshalb muss ich das zunächst machen um auf den Winkel zu kommen? Daher 1. ableitung und dann tan^-1 um den winkel zu errechnen.

Der komplette ansatz:
die folgenden punkte sind uns bekannt: P1 (-3|0) P2 (+3|0) P3 (0|4.5)

allgemeiner satz mit quadratischen funktionen:
f(x) = [mm] ax^{2}+bx+c [/mm]

1. Versuchen die fehlenden variablen zu finden...
bekannt ist c = 4.5 (erklärung?)

f(3) = [mm] a*3^{2} [/mm] + b*3 + 4.5
f(3) = 9a + 3b + 4.5
f(-3)= [mm] a*-3^{2} [/mm] + b*-3 + 4.5
f(-3)= 9a -3b + 4.5

f(-3) und f(3) addieren: (wieso?)

f(3) = 9a + 3b + 4.5
f(-3)= 9a -3b + 4.5
[mm] -\bruch{1}{2}= [/mm] a

einsetzen...

f(3) = [mm] 9*-\bruch{1}{2} [/mm] + 3b +4.5
b    = 0

Ergebnis:
f(x) = [mm] -\bruch{1}{2}x^{2} [/mm] + 4.5
f'(x)= -x

tan^-1(3) = ~72 grad


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umgang mit quadr. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Fr 18.03.2011
Autor: Pappus

Guten Abend!

> eine Halle mit 6 metern breite und 4.5 m höhe soll mit
> einem parabelförmigen dach überbaut werden. In welchem
> Winkel müssen die Träger des Daches angebracht werden?
>  
>

...

> Der komplette ansatz:
>  die folgenden punkte sind uns bekannt: P1 (-3|0) P2 (+3|0)
> P3 (0|4.5)
>  
> allgemeiner satz mit quadratischen funktionen:
>  f(x) = [mm]ax^{2}+bx+c[/mm]
>  
> 1. Versuchen die fehlenden variablen zu finden...
>  bekannt ist c = 4.5 (erklärung?)
>  
> f(3) = [mm]a*3^{2}[/mm] + b*3 + 4.5
>  f(3) = 9a + 3b + 4.5
>  f(-3)= [mm]a*-3^{2}[/mm] + b*-3 + 4.5
>  f(-3)= 9a -3b + 4.5
>  

Dein Ansatz ist soweit in Ordnung, Du hast bloß vergessen, den Funktionswert anzugeben. Beispiel:

[mm] $f(3)=\bold{9a+3b+4,5 = 0}$ [/mm]

[mm] $f(-3)=\bold{9a-3b+4,5 = 0}$ [/mm]

Es werden nur die fett gesetzten Teile der Gleichungen zur Bestimmung der Koeffizienten benutzt.

> f(-3) und f(3) addieren: (wieso?)

Wie Du siehst, fallen durch das Addieren die b-Werte weg und Du bekommst eine lineare Gleichung in a.

>  
> f(3) = 9a + 3b + 4.5
>  f(-3)= 9a -3b + 4.5
>  [mm]-\bruch{1}{2}=[/mm] a
>  
> einsetzen...
>  
> f(3) = [mm]9*-\bruch{1}{2}[/mm] + 3b +4.5
>  b    = 0
>  
> Ergebnis:
>  f(x) = [mm]-\bruch{1}{2}x^{2}[/mm] + 4.5
>  f'(x)= -x
>  
> tan^-1(3) = ~72 grad
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

Pappus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]