matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenUmkehrfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Umkehrfunktion
Umkehrfunktion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Funktion einschränken
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:44 Mo 03.04.2006
Autor: Mathematik2005

Hallo!

Meine Aufgabe lautet ich soll den Definitionsbereich für sin x und für cos x jeweils so einschränken, dass sie umkehrbar sind und soll sie dann auch noch zeichen :( ich verstehe davon leider aber nicht viel :s hoffe mir kann jemand helfen...

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mo 03.04.2006
Autor: Bastiane

Hallo!

> Meine Aufgabe lautet ich soll den Definitionsbereich für
> sin x und für cos x jeweils so einschränken, dass sie
> umkehrbar sind und soll sie dann auch noch zeichen :( ich
> verstehe davon leider aber nicht viel :s hoffe mir kann
> jemand helfen...

Naja, wann ist denn eine Funktion umkehrbar? Oder warum ist z. B. die Funktion [mm] f(x)=x^2 [/mm] nicht umkehrbar? Das ist der Fall, weil du für unterschiedliche x-Werte denselben y-Wert hast. Z.B. ist f(3)=9 und f(-3)=9. Wenn du das nun umkehren würdest, dann hättest du für 9 kein eindeutiges Bild, nämlich einmal 3 und einmal -3 - welches solltest du da nehmen? (Mathematisch sagt man, die Funktion ist nicht injektiv!) Und was macht man mit [mm] f(x)=x^2 [/mm] um es umkehren zu können? Man nimmt z. B. nur die positiven x-Werte. Denn für alle [mm] $x,y\ge [/mm] 0$ gilt: für [mm] x\not=y [/mm] ist [mm] f(x)\not=f(y). [/mm] Also kann man sie umkehren.

Und das gleiche machen wir nun mit [mm] $\sin [/mm] x$ und [mm] $\cos [/mm] x$. Probierst du das nun mal? Ein Tipp noch: es hat damit zu tun, wo die Funktion monoton steigend bzw. monoton fallend ist.

Und zum Zeichnen: Probier's doch mal mit []Funkyplot.

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Umkehrfunktion: Funktion einschränken
Status: (Frage) beantwortet Status 
Datum: 21:47 Mo 03.04.2006
Autor: Mathematik2005

Ich danke dir erstmal für deine aufmerksamkeit! :) aber ich verstehe leider nicht was du meinst?! wie muss ich denn meinen Definitionsbereich wählen und warum? wäe nett wenn du mir das etwas näher erläutern könntest :S

Bezug
                        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Mo 03.04.2006
Autor: Blacky

[mm] sin_o:[-\bruch{\pi}{2};\bruch{\pi}{2}] \to[-1;1], [/mm] x [mm] \mapsto [/mm] sin(x)
[mm] cos_o:[0;\pi]\to[-1;1], [/mm] x [mm] \mapsto [/mm] cos(x)

So, du lädst dir am besten mal Funkyplot runter, wie es Bastiane gesagt hat. Dann lässt du dir sin(x) und cos(x) zeichnen und guckst dir die Intervalle an, die ich angegeben habe. Du wirst sehen das sin(x) in dem Intervall streng monoton steigend ist und cos(x) streng monoton fallend. Also wird jedem y Wert nur genau ein x Wert zugeordnet, was die Bedingung für Umkehrbarkeit ist. Man könnte auch noch beliebige andere Intervalle nehmen, die diese Bedingung erfüllen aber die beiden angegebenen sind die geläufigen. Wenn du das nicht verstehst solltest du dich mal über Bijektivität informieren :)

mfg blacky

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]