matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenUmkehrfunktion berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Umkehrfunktion berechnen
Umkehrfunktion berechnen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 So 25.10.2009
Autor: MontBlanc

Aufgabe
Bestimmen Sie die Umkehrfunktion von [mm] f(x)=\bruch{1}{1+\wurzel{x}}. [/mm] Bestätigen Sie, dass [mm] f(f^{-1}(x))=x [/mm] falls x aus der richtigen Definitionsmenge stammt.

Hallo,

also die Umkehrfunktion zu finden ist nicht so schwer:

[mm] y=\bruch{1}{1+\wurzel{x}} [/mm]
[mm] \gdw y*(1+\wurzel{x})=1 [/mm]
[mm] \gdw \wurzel{x}=\bruch{1-y}{y} [/mm]
[mm] x=\bruch{(1-y)^2}{y^2} [/mm]

Auch dass [mm] f(f^{-1}(x))=x [/mm] ist kann ich zeigen, aber was hat es mit der Einschränkung zu tun,  dass x aus der richtigen Definitionsmenge stammen muss ? Die wäre ja für die Umkehrfunktion $ 0 < x [mm] \le [/mm] 1 $ weil das die Wertemenge der ausgangsfunktion ist...

lg

        
Bezug
Umkehrfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 So 25.10.2009
Autor: HeimlichDurchNullTeiler

Hallo!

Dass der Definitionsbereich der Umkehrfunktion in der Wertemenge der Ausgangsfunktion liegt, muss meiner Ansicht nach nur gelten, wenn du $ [mm] f^{-1}(f(x)) [/mm] $ betrachtest.

Du betrachtest aber genau die umgekehrte Komposition $ [mm] f(f^{-1}(x))=x [/mm] $, d.h. der Wertebereich der Umkehrfunktion muss im Definitionsbereich der Ausgangsfunktion liegen.

Darf $x$ auch eine komplexe Zahl sein? Falls ihr nur mit reellwertigen Zahlen rechnet, ist $f$ nur für [mm] $x\ge0$ [/mm] definiert.

Da der Wertebereich von [mm] $f^{-1}$ [/mm] jedoch ohnehin nur nicht-negative Zahlen enthält, bräuchtest du auch den Definitionsbereich von [mm] $f^{-1}$ [/mm] nicht einschränken.

Bezug
                
Bezug
Umkehrfunktion berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:02 Mo 26.10.2009
Autor: MontBlanc

hallo,

und danke für deine antwort. so ähnlich habe ich es mir auch gedacht. du hast mich nur an einem punkt falsch verstanden. wir haben gelernt, dass wenn man eine umkehrfunktion berechnet, diese als definitionsbereich den wertebereich der ausgangsfunktion besitzt. ihr wertebereich ist der definitionsbereich der ausgangsfunktion. letzteres scheint aber hier irgendwie nicht zuzutreffen weil man für x sehr wohl werte einsetzen kann, die nicht in $ 0 [mm] \le [/mm] x [mm] \le [/mm] 1 $

lg,

exe

Bezug
        
Bezug
Umkehrfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mo 26.10.2009
Autor: fred97

Der Wertebereich von f ist das Intervall  (0,1]. Weiter ist

               [mm] $f^{-1}(x) [/mm] =  [mm] \bruch{(1-x)^2}{x^2}$ [/mm] für x [mm] \in [/mm]  (0,1].

Um $ [mm] f(f^{-1}(x)) [/mm] $ zu berchnen , mußt Du [mm] \wurzel{f^{-1}(x)} [/mm] berechnen.

Für x [mm] \in [/mm]  (0,1] ist dies =  [mm] \bruch{1-x}{x} [/mm]


Für beliebiges x [mm] \not= [/mm] 0 wäre  [mm] \wurzel{\bruch{(1-x)^2}{x^2}} [/mm] = [mm] \bruch{|1-x|}{|x|} [/mm]


FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]