matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenUmkreismittelpunkt,Umkreis etc
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Umkreismittelpunkt,Umkreis etc
Umkreismittelpunkt,Umkreis etc < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkreismittelpunkt,Umkreis etc: Vektoren Dreieck
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 11.02.2014
Autor: MathematikLosser

Aufgabe
Gegeben ist das Dreieck
A (15/1)
B (11/13)
C (3/5)

Berechne den Umkreismittelpunkt, die Gleichung des Umkreises, die Tangenten der Eckpunkte, deren Winkel und die des Dreiecks.


Mein Versuch: Umkreismittelpunkt:
HBC [mm] =\bruch{C+B}{2} [/mm] = [mm] \bruch{\vektor{11\\ 13}+\vektor{3 \\ 5}}{2} [/mm] = [mm] \vektor{7 \\ 9} [/mm]

Nun C-B= [mm] \vektor{3 \\ 5}-\vektor{11 \\ 13}=\vektor{-8 \\ -8} [/mm]

=> [mm] -8x-8y=\vektor{7 \\ 9}*\vektor{-8 \\ -8} [/mm]
-8x-8y= -128

HAB= [mm] \bruch{\vektor{15 \\ 1}+\vektor{3 \\ 5}}{2}= \vektor{13 \\ 7} [/mm]

B-A = [mm] \vektor{11 \\ 13}-\vektor{15 \\ 1}= \vektor{-4 \\ 12} [/mm]

=> -4x+12y= [mm] \vektor{-4 \\ 12}*\vektor{13 \\ 7} [/mm]
-4x+12y= 32

U: -8x-8y=-128
-4x+12y=32   /*2

-8x-8y=-128
-8x+24y=64
-32y=-192
y=6

x: -8x-8*6=-128
x=10

U= (10/6)

Umkreisgleichung:

k:(x-xm)²+(y-ym)²=r²

(15-10)²+(1-6)²=r²
25+25=r²
r²=50

Kreisgleichung:
k:(x-10)²+(y-6)²=50


Tangenten:
Tangentenspaltform:
(x-xm)*(xa-xm)+(y-ym)*(ya-ym)

Ta: (x-10)*(15-10)+(y-6)*(1-6)
=(x-10)*5+(y-6)*(-5)
=5x-50+5y+30
Ta: 5x-5y=20

Tb: (x-10)*(11-10)+(y-6)*(13-6)
=x-10+7y-42
Tb= x+7y=52

Tc: (x-10)*(3-10)+(y-6)*(5-6)
-7x+70-y+6
-7x-y=-76 /*(-1)
7x+y=76

Winkel:
cos phi [mm] =\bruch{\overrightarrow{g1}*\overrightarrow{g2}}{/\overrightarrow{g1}/*/\overrightarrow{g2}/} [/mm]

[mm] \bruch{\vektor{5 \\ -5}*\vektor{1 \\ 7}}{\wurzel{50}*\wurzel{50}} [/mm]
[mm] =\bruch{\vektor{5 \\ -35}}{50} [/mm]

[mm] cos=\bruch{-30}{50} [/mm]
ca. 126,87°

Stimmen meine Berechnungen und wie berechne ich mir nun die Winkel des Dreicks?
Meine Überlegung wäre mittels Spitze-Schaft die Seitenlängen zu berechnen und dann tan bzw. sin bzw. cosinus anzuwenden?


        
Bezug
Umkreismittelpunkt,Umkreis etc: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Di 11.02.2014
Autor: chrisno


> Gegeben ist das Dreieck
>  A (15/1)
>  B (11/13)
>  C (3/5)
>  ....
> Kreisgleichung:
> k:(x-10)²+(y-6)²=50

A, B und C eingestzt, es kommt immer 50 heraus. [ok]

>  
>
> Tangenten:
>  Tangentenspaltform:
>  (x-xm)*(xa-xm)+(y-ym)*(ya-ym)

= ? und hier kommt es wirklich drauf an. Schau mal zu Beispiel bei
http://www.mathe-online.at/materialien/sarah.wendler/files/Textfiles/Kreistangenten.pdf

>  
> Ta: (x-10)*(15-10)+(y-6)*(1-6)
>  =(x-10)*5+(y-6)*(-5)
>  =5x-50+5y+30
>  Ta: 5x-5y=20

A zur Probe eingesetzt, passt nicht. [notok]
Schau Dir mal die Zeile an, in der Du alle Klammern aufgelöst hast.

>  
> Tb: (x-10)*(11-10)+(y-6)*(13-6)
>  =x-10+7y-42
>  Tb= x+7y=52

Vorzeichenfehler an der gleichen Stelle wie vorher.

>  
> Tc: (x-10)*(3-10)+(y-6)*(5-6)
>  -7x+70-y+6
>  -7x-y=-76 /*(-1)
>  7x+y=76

C zur Probe eingesetzt: passt nicht
>....   wie berechne ich mir nun die

> Winkel des Dreicks?
>  Meine Überlegung wäre mittels Spitze-Schaft die

Schaft ?

> Seitenlängen zu berechnen und dann tan bzw. sin bzw.
> cosinus anzuwenden?

Du bekommst ganz leicht die Seiten als Vektoren.

>  


Bezug
                
Bezug
Umkreismittelpunkt,Umkreis etc: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mi 12.02.2014
Autor: MathematikLosser

Um die Tangente an den Punkt zu legen benötige ich nun also die Formel
(T-M)*(X-M)=r²
http://www.mathe-online.at/materialien/sarah.wendler/files/Textfiles/Kreistangenten.pdf

bei ta => (15-10)*(1-6)=50???
Doch wie stelle ich damit eine Tangente auf?

Kann mir bitte jemand erklären wie ich die Spaltform der Tangente hier richtig anwende?

Bezug
                        
Bezug
Umkreismittelpunkt,Umkreis etc: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mi 12.02.2014
Autor: MathePower

Hallo MathematikLosser,

> Um die Tangente an den Punkt zu legen benötige ich nun
> also die Formel
>  (T-M)*(X-M)=r²
>  
> http://www.mathe-online.at/materialien/sarah.wendler/files/Textfiles/Kreistangenten.pdf
>  
> bei ta => (15-10)*(1-6)=50???
>  Doch wie stelle ich damit eine Tangente auf?
>  
> Kann mir bitte jemand erklären wie ich die Spaltform der
> Tangente hier richtig anwende?


Die Gleichung der Tangente lautet doch:

[mm](x-xm)*(xa-xm)+(y-ym)*(ya-ym)=\red{50}[/mm]

Bei Deinen Berechnungen der Tangenten
hast Du nur die linke Seite berechnet.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]