matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieUnbestimmtes Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Unbestimmtes Integral
Unbestimmtes Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Do 25.01.2007
Autor: bluebird

Aufgabe
Berechne das folgende Integral:
[mm]\integral_{}{} \bruch{1}{x^3+1}\, dx [/mm]

Ich versuche das Integral nun schon längere Zeit zu lösen. Partialbruchzerlegung scheint in den komplexen Zahlen zu funktionieren, ist aber alles andere als schön. Mit der Produktregel komme ich auf keinen grünen Zweig. Vermutlich geht es mit einer Substitution, bloß sehe ich nicht, was ich substituieren soll und vor allem wie das genau funktioniert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Do 25.01.2007
Autor: Stefan-auchLotti


> Berechne das folgende Integral:
>  [mm]\integral_{}{} \bruch{1}{x^3+1}\, dx [/mm]
>  Ich versuche das
> Integral nun schon längere Zeit zu lösen.
> Partialbruchzerlegung scheint in den komplexen Zahlen zu
> funktionieren, ist aber alles andere als schön. Mit der
> Produktregel komme ich auf keinen grünen Zweig. Vermutlich
> geht es mit einer Substitution, bloß sehe ich nicht, was
> ich substituieren soll und vor allem wie das genau
> funktioniert.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

[mm] $\rmfamily \text{Hi,}$ [/mm]

[mm] $\rmfamily \text{Hm. Ich kann dir leider nur die Lösung liefern, die meiner Meinung nach auf einen sehr komplizierten Rechenweg}$ [/mm]

[mm] $\rmfamily \text{hinweist, den ich dir leider nicht darlegen kann!}$ [/mm]

[mm] $\rmfamily \integral\bruch{1}{x^3+1}\,\mathrm{d}x=\bruch{\wurzel{3}*\operatorname{arctan}\left(\bruch{\wurzel{3}*\left(2x-1\right)}{3}\right)}{3}-\bruch{\ln\left(x^2-x+1\right)}{6}+\bruch{\ln\left(x+1\right)}{3}+C$ [/mm]



[mm] $\rmfamily \text{Grüße, Stefan.}$ [/mm]

Bezug
        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Do 25.01.2007
Autor: riwe

der 1. teil ist relativ einfach mit partialbruchzerlegung zu machen
[mm] I=\frac{1}{3}\integral_{}^{}{(\frac{1}{x+1}+\frac{2-x}{x²-x+1})dx} [/mm]
der 2. teil des integranden ist nun ekliger, und da mußt du  vermutlich die substitution [mm]x-\frac{1}{2}=\frac{u}{2}\cdot\sqrt{3}[/mm]  
vornehmen.

Bezug
                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Do 25.01.2007
Autor: bluebird

Die Partialbruchzerlegung, habe ich zu beginn bereits durchgeführt und bin auf folgendes Ergebnis gekommen:
[mm]\integral_{}{} \bruch{1/3}{x+1}\,dx+\integral_{}{} \bruch{1/2+\wurzel{3/4}i}{x-1/2-\wurzel{3/4}i}+\integral_{}{} \bruch{1/2-\wurzel{3/4}i}{x-1/2+\wurzel{3/4}i}[/mm]
Aber da bringt mir die o.g. Substitution nichts, oder?

Bezug
                        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Do 25.01.2007
Autor: Mary15


> Die Partialbruchzerlegung, habe ich zu beginn bereits
> durchgeführt und bin auf folgendes Ergebnis gekommen:
>  [mm]\integral_{}{} \bruch{1/3}{x+1}\,dx+\integral_{}{} \bruch{1/2+\wurzel{3/4}i}{x-1/2-\wurzel{3/4}i}+\integral_{}{} \bruch{1/2-\wurzel{3/4}i}{x-1/2+\wurzel{3/4}i}[/mm]
>  
> Aber da bringt mir die o.g. Substitution nichts, oder?

Also, den Nenner kann man so zerlegen : [mm] (x+1)(x^2 [/mm] -x +1) Oder?
Dann bildest Du die Summe:


[mm] \bruch{A}{x+1} [/mm] + [mm] \bruch{Bx+C}{x^2-x+1} [/mm]

Klar wie weiter geht?

Bezug
                                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Do 25.01.2007
Autor: riwe

lies halt meinen beitrag oben (der 3. von oben), da steht es ja



> > Die Partialbruchzerlegung, habe ich zu beginn bereits


> > durchgeführt und bin auf folgendes Ergebnis gekommen:
>  >  [mm]\integral_{}{} \bruch{1/3}{x+1}\,dx+\integral_{}{} \bruch{1/2+\wurzel{3/4}i}{x-1/2-\wurzel{3/4}i}+\integral_{}{} \bruch{1/2-\wurzel{3/4}i}{x-1/2+\wurzel{3/4}i}[/mm]
>  
> >  

> > Aber da bringt mir die o.g. Substitution nichts, oder?
>
> Also, den Nenner kann man so zerlegen : [mm](x+1)(x^2[/mm] -x +1)
> Oder?
>  Dann bildest Du die Summe:
>  
>
> [mm]\bruch{A}{x+1}[/mm] + [mm]\bruch{Bx+C}{x^2-x+1}[/mm]
>  
> Klar wie weiter geht?

Bezug
                                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Do 25.01.2007
Autor: bluebird

Das ist soweit schon erledigt. Die fertige Partialbruchzerlegung s.o.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]