matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 60: AnalysisUneigentliches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "VK 60: Analysis" - Uneigentliches Integral
Uneigentliches Integral < VK 60: Ana < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:41 Mo 30.05.2016
Autor: Lars.P

Aufgabe
Mit Hilfe der Aussagen des Majorantenkriterium und Minorantenkriterium für Integrale sollen Sie entscheiden über die Konvergenz folgender uneigentlicher Integrale.
a) [mm] \integral_{0}^{\infty}{e^{-x^{2}} dx} [/mm]
b) [mm] \integral_{0}^{1}{\bruch{cos(x)}{x} dx} [/mm]
c) [mm] \integral_{2}^{\infty}{\bruch{1}{log(x)} dx} [/mm]

a) ich habe [mm] e^{-x^{2}} \le [/mm] e^_{-x} gewählt.
und dann [mm] \integral_{0}^{\infty}{e^{-x} dx} [/mm] betrachtet.

[mm] =\limes_{n\rightarrow\infty}\integral_{0}^{n}{e^{-x} dx}= \limes_{n\rightarrow\infty}[-e^{-x}]_{0}^{n}= \limes_{n\rightarrow\infty}-e^{-b}+e^{0}=1 [/mm]
deshalb ist [mm] \integral_{0}^{\infty}{e^{-x^{2}} dx} [/mm] konvergent.

b) hab ich versucht nach mit [mm] \bruch{cos(x)}{x}\le \bruch{1}{x} [/mm] abzuschätzen hatte dann aber Probleme dann mit dem einsetzten der ,,0''.
Hab dann überlegt nach unten abzuschätzen mit [mm] cos(x)\le\bruch{cos(x)}{x}. [/mm] Dieser weg brachte mir nur die aussage dass cos(x) konvergent ist. Aber daraus kann ich ja nichts folgen.

c)
abschätzung nach oben [mm] \bruch{1}{log(x)}\le\bruch{1}{x}. [/mm]

[mm] \integral_{2}^{\infty}{\bruch{1}{x} dx}=\limes_{n\rightarrow\infty}\integral_{2}^{n}{\bruch{1}{x} dx}= \limes_{n\rightarrow\infty} [ln(x)]_{2}^{n}=ln(n)-ln(2)=\infty [/mm]
also divergent


        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 30.05.2016
Autor: fred97


> Mit Hilfe der Aussagen des Majorantenkriterium und
> Minorantenkriterium für Integrale sollen Sie entscheiden
> über die Konvergenz folgender uneigentlicher Integrale.
>  a) [mm]\integral_{0}^{\infty}{e^{-x^{2}} dx}[/mm]
>  b)
> [mm]\integral_{0}^{1}{\bruch{cos(x)}{x} dx}[/mm]
>  c)
> [mm]\integral_{2}^{\infty}{\bruch{1}{log(x)} dx}[/mm]
>  a) ich habe
> [mm]e^{-x^{2}} \le[/mm] e^_{-x} gewählt.
>  und dann [mm]\integral_{0}^{\infty}{e^{-x} dx}[/mm] betrachtet.
>  
> [mm]=\limes_{n\rightarrow\infty}\integral_{0}^{n}{e^{-x} dx}= \limes_{n\rightarrow\infty}[-e^{-x}]_{0}^{n}= \limes_{n\rightarrow\infty}-e^{-b}+e^{0}=1[/mm]
> deshalb ist [mm]\integral_{0}^{\infty}{e^{-x^{2}} dx}[/mm]
> konvergent.
>  




O.K.



> b) hab ich versucht nach mit [mm]\bruch{cos(x)}{x}\le \bruch{1}{x}[/mm]
> abzuschätzen hatte dann aber Probleme dann mit dem
> einsetzten der ,,0''.
> Hab dann überlegt nach unten abzuschätzen mit
> [mm]cos(x)\le\bruch{cos(x)}{x}.[/mm] Dieser weg brachte mir nur die
> aussage dass cos(x) konvergent ist. Aber daraus kann ich ja
> nichts folgen.

cos (x) [mm] \ge [/mm] cos (1) für x zwischen 0 und 1.



>  
> c)
> abschätzung nach oben [mm]\bruch{1}{log(x)}\le\bruch{1}{x}.[/mm]

wo hast du das denn her ? stimmen tut nicht.

fred

>  
> [mm]\integral_{2}^{\infty}{\bruch{1}{x} dx}=\limes_{n\rightarrow\infty}\integral_{2}^{n}{\bruch{1}{x} dx}= \limes_{n\rightarrow\infty} [ln(x)]_{2}^{n}=ln(n)-ln(2)=\infty[/mm]
> also divergent
>  


Bezug
                
Bezug
Uneigentliches Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:02 Mo 30.05.2016
Autor: Lars.P

Bei $ [mm] \bruch{1}{log(x)}\le\bruch{1}{x}. [/mm] $ habe ich [mm] \le [/mm] anstatt [mm] \ge [/mm] geschrieben. Da habe ich mich vertan.
es Müsste
[mm] \bruch{1}{log(x)}\ge\bruch{1}{x} [/mm] sein sonst würde ja meine Folgerung auch kein Sinn ergeben. wäre ja das Minorantenkriterium.

Bei b)  versteh ich deine Aussage nicht. Meinst du jetzt [mm] \bruch{cos(x)}{x}\ge [/mm] cos(x) oder meinst du [mm] cos(x)\ge\bruch{cos(x)}{x}. [/mm]


Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mo 30.05.2016
Autor: fred97


> Bei [mm]\bruch{1}{log(x)}\le\bruch{1}{x}.[/mm] habe ich [mm]\le[/mm] anstatt
> [mm]\ge[/mm] geschrieben. Da habe ich mich vertan.
> es Müsste
> [mm]\bruch{1}{log(x)}\ge\bruch{1}{x}[/mm] sein sonst würde ja meine
> Folgerung auch kein Sinn ergeben. wäre ja das
> Minorantenkriterium.

dann ist es o.k.


>  
> Bei b)  versteh ich deine Aussage nicht. Meinst du jetzt
> [mm]\bruch{cos(x)}{x}\ge[/mm] cos(x) oder meinst du
> [mm]cos(x)\ge\bruch{cos(x)}{x}.[/mm]
>  

multipliziere die von mir angegebene Ungleichung mit 1/x .....


fred


Bezug
                                
Bezug
Uneigentliches Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:33 Mo 30.05.2016
Autor: Lars.P

das wäre dann ja [mm] \bruch{cos(x)}{x}\ge \bruch{cos(1)}{x}. [/mm]
wenn ich danach geh würde ich ja [mm] \integral_{0}^{1}{\bruch{cos(1)}{x} dx}betrachten. [/mm] Ich würde als erstes [mm] cos(1)\integral_{0}^{1}{\bruch{1}{x} dx} [/mm] machen und dass würde ja zu [mm] cos(1)*\limes_{n\rightarrow 1}\integral_{0}^{n}{\bruch{1}{x} dx}=cos(1)\limes_{n\rightarrow 1}[ln(x)]_{0}^{n}= cos(1)*\limes_{n\rightarrow 1}ln(n)-ln(0)= [/mm] dann hätte ich dort ein problem da Ln(0) nicht definiert ist.


Bezug
                                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mo 30.05.2016
Autor: Stala

Darum musst du ja auch nicht den Grenzwert gegen 1, sondern den gegen 0 betrachten.
Da strebt der Logarithmus nämlich ins Unendliche...

Bezug
                                                
Bezug
Uneigentliches Integral: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 30.05.2016
Autor: Lars.P

Also: $ [mm] cos(1)\cdot{}\limes_{n\rightarrow 0}\integral_{n}^{1}{\bruch{1}{x} dx}=cos(1)\limes_{n\rightarrow 0}[ln(x)]_{n}^{1}= cos(1)\cdot{}\limes_{n\rightarrow 0}ln(1)-ln(n)= \infty$ [/mm] und somit wäre es divergent


Bezug
                                                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mo 30.05.2016
Autor: fred97


>  Also: [mm]cos(1)\cdot{}\limes_{n\rightarrow 0}\integral_{n}^{1}{\bruch{1}{x} dx}=cos(1)\limes_{n\rightarrow 0}[ln(x)]_{n}^{1}= cos(1)\cdot{}\limes_{n\rightarrow 0}ln(1)-ln(n)= \infty[/mm]
> und somit wäre es divergent

so ist es

fred


>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]