matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUneigentliches Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Uneigentliches Integrale
Uneigentliches Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Sa 27.04.2013
Autor: Hellsing89

Aufgabe
Bestimmen sie folgende uneigentliche Integrale:

c) [mm] \integral_{0}^{4}{\bruch{1}{(x-2)^2} dx} [/mm]


Also das problem dürfte hier bei x=2 liegen.

Also wollte ich das Integral folgendermaßen aufspalten:

[mm] \limes_{z\rightarrow2} \integral_{0}^{z}{\bruch{1}{(x-2)^2} dx}+\limes_{t\rightarrow2} \integral_{t}^{4}{\bruch{1}{(x-2)^2} dx} [/mm]

Dann wollte ich das ganze substituieren, also

w=x-2
dw=dx


[mm] \limes_{z\rightarrow2} \integral_{-2}^{z-2}{\bruch{1}{w^2} dw}+\limes_{t\rightarrow2} \integral_{t-2}^{2}{\bruch{1}{w^2} dw} [/mm]

[mm] =\limes_{z\rightarrow2} [-\bruch{1}{w}]^{z-2}_{-2}+\limes_{t\rightarrow2} [-\bruch{1}{w}]^{2}_{t-2} [/mm]

= [mm] \limes_{z\rightarrow2} -(\bruch{1}{z-2}-(-\bruch{1}{2})+\limes_{t\rightarrow2}(-\bruch{1}{2}-(-\bruch{1}{(t-2)})) [/mm]

Nun habe ich etwas, was nicht konvergiert, also konvergiert das Integral nicht.
Aber so ganz formal korrekt scheint mir das ganze dennoch nicht zu sein.
Ist das ergebnis so erstmal richtig ?
Darf ich das formal so aufschreiben ?

        
Bezug
Uneigentliches Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Sa 27.04.2013
Autor: Diophant

Hallo,

> Bestimmen sie folgende uneigentliche Integrale:

>

> c) [mm]\integral_{0}^{4}{\bruch{1}{(x-2)^2} dx}[/mm]
> Also das
> problem dürfte hier bei x=2 liegen.

>

> Also wollte ich das Integral folgendermaßen aufspalten:

>

> [mm]\limes_{z\rightarrow2} \integral_{0}^{z}{\bruch{1}{(x-2)^2} dx} \limes_{t\rightarrow2} \integral_{t}^{4}{\bruch{1}{(x-2)^2} dx}[/mm]

>

> Dann wollte ich das ganze substituieren, also

>

> w=x-2
> dw=dx

>
>

> [mm]\limes_{z\rightarrow2} \integral_{-2}^{z-2}{\bruch{1}{w^2} dw}+\limes_{t\rightarrow2} \integral_{t-2}^{2}{\bruch{1}{w^2} dw}[/mm]

>

> [mm]=\limes_{z\rightarrow2} [-\bruch{1}{w}]^{z-2}_{-2}+\limes_{t\rightarrow2} [-\bruch{1}{w}]^{2}_{t-2}[/mm]

>

> = [mm]\limes_{z\rightarrow2} -(\bruch{1}{z-2}-(-\bruch{1}{2})+\limes_{t\rightarrow2}(-\bruch{1}{2}-(-\bruch{1}{(t-2)}))[/mm]

>

> Nun habe ich etwas, was nicht konvergiert, also konvergiert
> das Integral nicht.
> Aber so ganz formal korrekt scheint mir das ganze dennoch
> nicht zu sein.

Das würde ich so gar nicht sagen. Deine Überlegung ist doch völlig richtig, und auch das mit der Substitution kann man machen, es ist hier einfach nur unntötig, weil man für gewöhnlich so etwas wie

[mm] \int{\bruch{1}{(x-a)^2} dx}=-\bruch{1}{x-a}+C [/mm]

voraussetzen darf.

Und um die Grenzwertbetrachtung kommst du auf keinen Fall herum. In diesem Zusammenhang ist dir allerdings der einzige formale Fehler unterlaufen: es muss natürlich bei beiden Grenzwerten noch dazugesagt werden, ob es sich um rechts- oder linksseitige Grenzwerte handelt (davon hängt in diesem Fall das Vorzeichen ab!).


Gruß, Diophant

Bezug
                
Bezug
Uneigentliches Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 So 28.04.2013
Autor: Hellsing89


> Hallo,
>  
> > Bestimmen sie folgende uneigentliche Integrale:
>  >
>  > c) [mm]\integral_{0}^{4}{\bruch{1}{(x-2)^2} dx}[/mm]

>  > Also das

>  > problem dürfte hier bei x=2 liegen.

>  >
>  > Also wollte ich das Integral folgendermaßen

> aufspalten:
>  >
>  > [mm]\limes_{z\rightarrow2} \integral_{0}^{z}{\bruch{1}{(x-2)^2} dx} \limes_{t\rightarrow2} \integral_{t}^{4}{\bruch{1}{(x-2)^2} dx}[/mm]

>  
> >
>  > Dann wollte ich das ganze substituieren, also

>  >
>  > w=x-2

>  > dw=dx

>  >
>  >
>  > [mm]\limes_{z\rightarrow2} \integral_{-2}^{z-2}{\bruch{1}{w^2} dw}+\limes_{t\rightarrow2} \integral_{t-2}^{2}{\bruch{1}{w^2} dw}[/mm]

>  
> >
>  > [mm]=\limes_{z\rightarrow2} [-\bruch{1}{w}]^{z-2}_{-2}+\limes_{t\rightarrow2} [-\bruch{1}{w}]^{2}_{t-2}[/mm]

>  
> >
>  > = [mm]\limes_{z\rightarrow2} -(\bruch{1}{z-2}-(-\bruch{1}{2})+\limes_{t\rightarrow2}(-\bruch{1}{2}-(-\bruch{1}{(t-2)}))[/mm]

>  
> >
>  > Nun habe ich etwas, was nicht konvergiert, also

> konvergiert
>  > das Integral nicht.

>  > Aber so ganz formal korrekt scheint mir das ganze

> dennoch
>  > nicht zu sein.

>  
> Das würde ich so gar nicht sagen. Deine Überlegung ist
> doch völlig richtig, und auch das mit der Substitution
> kann man machen, es ist hier einfach nur unntötig, weil
> man für gewöhnlich so etwas wie
>  
> [mm]\int{\bruch{1}{(x-a)^2} dx}=-\bruch{1}{x-a}+C[/mm]
>  
> voraussetzen darf.
>  
> Und um die Grenzwertbetrachtung kommst du auf keinen Fall
> herum. In diesem Zusammenhang ist dir allerdings der
> einzige formale Fehler unterlaufen: es muss natürlich bei
> beiden Grenzwerten noch dazugesagt werden, ob es sich um
> rechts- oder linksseitige Grenzwerte handelt (davon hängt
> in diesem Fall das Vorzeichen ab!).
>  
>
> Gruß, Diophant

Ah okay vielen dank :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]