matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeUngleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Ungleichung
Ungleichung < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Lösungsmenge bestimmen
Status: (Frage) beantwortet Status 
Datum: 17:27 Fr 09.07.2010
Autor: Martin1988

Aufgabe
Bestimmen Sie die Lösungsmenge IL der Ungleichung

[mm] \bruch{x+1}{x+2}\le\bruch{x+3}{x+4} [/mm]

und damit die ganzen Zahlen a und b , für die gilt: IL = ( [mm] -\infty, [/mm] a ) (b , [mm] +\infty [/mm] ) .

Gerechnet habe ich wie folgt:

[mm] (x+1)*(x+4)\le(x+3)*(x+2) [/mm]

[mm] x^2+5x+4\le x^2+5x+6 [/mm]

[mm] \bruch{x^2+5x+4}{x^2+5x+6}\le0 [/mm]

Nun dürfen ja sowohl Zähler als auch der Nenner nicht kleiner als Null werden.

- also erste zu lösende Gleichung:  [mm] x^2+5x+6=0 [/mm]

- zweite: [mm] x^2+5x+4=0 [/mm]

Ergebnisse für die erste Gleichung:

[mm] x_{1}=-3 [/mm]
[mm] x_{2}=-2 [/mm]

Für die Zweite:

[mm] x_{3}=-4 [/mm]
[mm] x_{4}=-1 [/mm]

Daher dachte ich nun, die Lösung wäre IL = ( [mm] -\infty, [/mm] -4 ) (-1 , [mm] +\infty [/mm] )

Laut Lösungsbuch ist aber die Lösung IL = ( [mm] -\infty, [/mm] -4 ) (-2 , [mm] +\infty [/mm] ) korrekt.

Wo ist der Fehler?

Danke im Voraus!! :)

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Fr 09.07.2010
Autor: MathePower

Hallo Matrin1988,

> Bestimmen Sie die Lösungsmenge IL der Ungleichung
>  
> [mm]\bruch{x+1}{x+2}\le\bruch{x+3}{x+4}[/mm]
>  
> und damit die ganzen Zahlen a und b , für die gilt: IL = (
> [mm]-\infty,[/mm] a ) (b , [mm]+\infty[/mm] ) .
>  Gerechnet habe ich wie folgt:
>  
> [mm](x+1)*(x+4)\le(x+3)*(x+2)[/mm]
>  
> [mm]x^2+5x+4\le x^2+5x+6[/mm]
>  
> [mm]\bruch{x^2+5x+4}{x^2+5x+6}\le0[/mm]
>  
> Nun dürfen ja sowohl Zähler als auch der Nenner nicht
> kleiner als Null werden.
>  
> - also erste zu lösende Gleichung:  [mm]x^2+5x+6=0[/mm]
>  
> - zweite: [mm]x^2+5x+4=0[/mm]
>  
> Ergebnisse für die erste Gleichung:
>  
> [mm]x_{1}=-3[/mm]
>  [mm]x_{2}=-2[/mm]
>  
> Für die Zweite:
>  
> [mm]x_{3}=-4[/mm]
>  [mm]x_{4}=-1[/mm]
>  
> Daher dachte ich nun, die Lösung wäre IL = ( [mm]-\infty,[/mm] -4
> ) (-1 , [mm]+\infty[/mm] )
>
> Laut Lösungsbuch ist aber die Lösung IL = ( [mm]-\infty,[/mm] -4 )
> (-2 , [mm]+\infty[/mm] ) korrekt.
>  
> Wo ist der Fehler?


Hier mußt Du eine Fallunterscheidung machen:

i) [mm] x > -2 [/mm]
[mm] \Rightarrow x+2 > 0, \ x+4 > 0[/mm]

ii) [mm] -4 < x < -2[/mm]
[mm] \Rightarrow x+2 < 0, \ x+4 > 0[/mm]

iii) [mm] x < -4[/mm]
[mm] \Rightarrow x+2 < 0, \ x+4 < 0[/mm]


>  
> Danke im Voraus!! :)



Gruss
MathePower

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Fr 09.07.2010
Autor: Martin1988

Tut mir leid, aber ich verstehe die Antwort nicht ..... :-(

Bezug
                        
Bezug
Ungleichung: genauer fragen!
Status: (Antwort) fertig Status 
Datum: 18:21 Fr 09.07.2010
Autor: Loddar

Hallo Martin!


Du solltest hier schon "etwas" genauer fragen, damit man Dir auch helfen kann.

Da bei einer Ungleichung das Ungleichheitszeichen umgedreht werden muss, wenn man diese Ungleichung mit einem negativen Term multipliziert oder dividiert, musst Du zunächst untersuchen, ob dieser Term nun posotiv oder negativ ist.

In Deinem Fall kann sogar beides auftreten, so dass hier die o.g. Fallunterscheidung vollzogen werden muss.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]