matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUngleichung mit dem MWS beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Ungleichung mit dem MWS beweis
Ungleichung mit dem MWS beweis < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit dem MWS beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 So 07.02.2010
Autor: johnyan

Aufgabe
Beweisen Sie mit dem Mittelwertsatz der Differentialrechnung, dass für x [mm] \in \IR [/mm]
gilt:
[mm] e^x \ge [/mm] x+1

ich hab die ungleichung erstmal umgestellt

f(x) = [mm] e^x [/mm] -x-1 [mm] \ge [/mm] 0

dann habe ich ein a und b genommen und in die Gleichung des Mittelwertsatzes eingesetzt.

[mm] \bruch{e^b-b-1-e^a+a+1}{b-a}=f'(\xi)=e^\xi-\xi-1 [/mm]


[mm] e^b-b-e^a+a=(e^\xi-\xi-1)*(b-a) [/mm] und jetzt weiß ich nicht so genau, wie das weiter geht, ist der ansatz überhaupt richtig?

        
Bezug
Ungleichung mit dem MWS beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 02:31 Mo 08.02.2010
Autor: felixf

Moin!

> Beweisen Sie mit dem Mittelwertsatz der
> Differentialrechnung, dass für x [mm]\in \IR[/mm]
>  gilt:
>  [mm]e^x \ge[/mm] x+1
>  ich hab die ungleichung erstmal umgestellt
>  
> f(x) = [mm]e^x[/mm] -x-1 [mm]\ge[/mm] 0
>  
> dann habe ich ein a und b genommen und in die Gleichung des
> Mittelwertsatzes eingesetzt.
>  
> [mm]\bruch{e^b-b-1-e^a+a+1}{b-a}=f'(\xi)=e^\xi-\xi-1[/mm]

Du hast [mm] $f'(\xi)$ [/mm] falsch ausgerechnet.

> [mm]e^b-b-e^a+a=(e^\xi-\xi-1)*(b-a)[/mm] und jetzt weiß ich nicht
> so genau, wie das weiter geht, ist der ansatz überhaupt
> richtig?

Setz doch mal $a = 0$ ein, und multipliziere mit $b - a$. Was kannst du ueber den rechten Ausdruck sagen, wenn du die Faelle $b < 0$ und $b > 0$ unterscheidest? Beachte, dass [mm] $\xi$ [/mm] das gleiche Vorzeichen wie $b$ hat (warum?).

LG Felix


Bezug
                
Bezug
Ungleichung mit dem MWS beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Mo 08.02.2010
Autor: johnyan

$ [mm] e^b-b-e^a+a=(e^\xi-1)\cdot{}(b-a) [/mm] $

für a=0 einsetzen

$ [mm] e^b-b-1=(e^\xi-1)\cdot{}b [/mm] $
$ [mm] e^b-1=b*e^\xi [/mm] $

wenn b>0, dann ist [mm] b*e^\xi>0 [/mm]
wenn b<0, dann ist [mm] b*e^\xi<0 [/mm] , da exp() immer positiv ist, hängt das vorzeichen nur von b ab.

wie kann ich daraus eine aussage über [mm] e^x \ge [/mm] x+1 machen?

Bezug
                        
Bezug
Ungleichung mit dem MWS beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Mo 08.02.2010
Autor: fred97


> [mm]e^b-b-e^a+a=(e^\xi-1)\cdot{}(b-a)[/mm]
>  
> für a=0 einsetzen
>  
> [mm]e^b-b-1=(e^\xi-1)\cdot{}b[/mm]

Hier halten wir mal inne ! Du hast: ist b [mm] \ge [/mm] 0, so ex [mm] \xi [/mm]  zwischen 0 und b mit:

               [mm]e^b-b-1=(e^\xi-1)\cdot{}b[/mm]

Die rechte Seite dieser letzten Gleichung Ist  [mm] \ge [/mm] 0. Fazit:

                   [mm]e^b-b-1 \ge 0[/mm]  für b [mm] \ge [/mm] 0

Taufe b um in x und Du hast was Du brauchst

FRED



>  [mm]e^b-1=b*e^\xi[/mm]
>  
> wenn b>0, dann ist [mm]b*e^\xi>0[/mm]
>  wenn b<0, dann ist [mm]b*e^\xi<0[/mm] , da exp() immer positiv ist,
> hängt das vorzeichen nur von b ab.
>  
> wie kann ich daraus eine aussage über [mm]e^x \ge[/mm] x+1 machen?


Bezug
                                
Bezug
Ungleichung mit dem MWS beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mo 08.02.2010
Autor: johnyan

stimmt, das habe ich nicht gesehen.

in der aufgabe stand, dass man das für x [mm] \in \IR [/mm] zeigen sollen,

also lautet der zweite teil der antwort, dass es für b [mm] \le [/mm] 0 -> [mm] e^\xi \le [/mm] 1 und damit [mm] (e^\xi-1) \le [/mm] 0 und [mm] (e^\xi-1)\cdot{}b \ge [/mm] 0 ist, oder?

Bezug
                                        
Bezug
Ungleichung mit dem MWS beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 08.02.2010
Autor: fred97

Genau

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]