matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitUnstetige f,g => gof unstetig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Unstetige f,g => gof unstetig
Unstetige f,g => gof unstetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetige f,g => gof unstetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mo 21.04.2008
Autor: muy

Aufgabe
Gegeben seien reelle Funktionen f,g und es gelte [mm] x_{0} \in [/mm] D(f), [mm] f(x_{0}) \in [/mm] D(g). Beweisen oder widerlegen Sie:
Ist f in [mm] x_{0} [/mm] unstetig und ist g in [mm] f(x_{0}) [/mm] unstetig, so ist g [mm] \circ [/mm] f in [mm] x_{0} [/mm] unstetig.

Habe ein Problem ein passendes Gegenbeispiel zu finden.
Ich vermute, dass die Aussage so nicht gilt, so wie die Aussage nicht galt für:
"Sind f und g an der Stelle [mm] x_{0} [/mm] unstetig, so ist auch f+g an der Stelle [mm] x_{0} [/mm] unstetig."

[mm] f(x)=\begin{cases} 1, & \mbox{für } x \mbox{ > 0} \\ 0, & \mbox{für } x \mbox{ = 0} \\ -1, & \mbox{für } x \mbox{ < 0} \end{cases} [/mm]
Unstetig in [mm] x_{0} [/mm] = 0

[mm] g(x)=\begin{cases} -1, & \mbox{für } x \mbox{ > 0} \\ 0, & \mbox{für } x \mbox{ = 0} \\ 1, & \mbox{für } x \mbox{ < 0} \end{cases} [/mm]
Unstetig in [mm] x_{0} [/mm] = 0

[mm] (f+g)(x)=\begin{cases} 0, & \mbox{für } x \mbox{ > 0} \\ 0, & \mbox{für } x \mbox{ = 0} \\ 0, & \mbox{für } x \mbox{ < 0} \end{cases} [/mm]
Stetig in [mm] x_{0} [/mm] = 0

Sowas ähnliches muss ich nun für (g [mm] \circ [/mm] f)(x) basteln aber mir fällt einfach nichts ein.

        
Bezug
Unstetige f,g => gof unstetig: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mo 21.04.2008
Autor: anstei

Hallo Torben,

Ja, da gibt es tatsächlich Gegenbeispiele: Betrachte z.B. eine unstetige, selbst-inverse Funktion, d.h. [mm](f\circ f)(x) = x\ \forall x \in \IR[/mm]. So eine würde offensichtlich genügen! Kennst du eine 'einfache' Funktion, die auf sich selbst angewendet die Identität ergibt?

Viele Grüsse,
Andreas

Bezug
                
Bezug
Unstetige f,g => gof unstetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:27 Di 22.04.2008
Autor: muy

Okay, korrigiere mich bitte, wenn ich was unmathematisch schreib.
f(x) = [mm] \bruch{1}{x}: [/mm] f(0) = 0 ist unstetig in [mm] x_{0} [/mm] = 0, da die Funktion gegen [mm] \infty [/mm] oder [mm] -\infty [/mm] strebt, je nachdem von welcher Seite man sich der 0 nähert.
Und [mm] (f)(\bruch{1}{x}) [/mm] = x.

Was für ein g(x) nehm ich denn jetzt für das gilt, dass [mm] g(f(x_{0})), [/mm] sprich g(0), unstetig und (g [mm] \circ [/mm] f)(x) stetig ist?
Oder kann ich einfach g(x) = f(x) = [mm] \bruch{1}{x} [/mm] definieren?

Dann hätte ich...mh...
[mm] (g\circ f)(x_{0}) [/mm] = [mm] x_{0} [/mm] = 0 und
[mm] \limes_{x \rightarrow x_{0}}(g \circ [/mm] f)(x) = [mm] x_{0} [/mm] = 0

Und damit wäre die Behauptung widerlegt?
Wenn es falsch ist, bin ich aber wenigstens auf der richtigen Spur, richtig?

Bezug
                        
Bezug
Unstetige f,g => gof unstetig: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Di 22.04.2008
Autor: laryllan

Aloha hé,

also, so wie ich das aktuell blicke, würde das passen. Wenn [tex] g(x) [/tex] ebenfalls unstetig im gleichen Punkt [tex] x_{0} [/tex] sein soll, dann bietet es sich an, [mm] f(x) = g(x) = \bruch{1}{x} [/mm] zu verwenden.

Offenbar erfüllt das auch gerade die Bedingungen für die Komposition. Wie ich finde eine recht nette Aufgabe.

Wirklich "unmathematisch" hast du es auch nicht geschrieben. Für nen Übungszettel solltest du das ganze aber nochmal sauber aufschreiben. (Manchma ergeben sich ja beim Aufschreibe-Prozess nochmal tiefschürfende Einsichten - so ist es zumindest bei mir immer).

Namárie,
sagt ein Lary, wo mal weiterhuscht

Bezug
                        
Bezug
Unstetige f,g => gof unstetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 Sa 26.04.2008
Autor: felixf

Hallo

>  Oder kann ich einfach g(x) = f(x) = [mm]\bruch{1}{x}[/mm]
> definieren?

Naja, dann hast du Funktionen [mm] $\IR \setminus \{ 0 \} \to \IR \setminus \{ 0 \}$, [/mm] die stetig sind. Du musst schon die 0 irgendwie in's Spiel bringen, etwa indem du $f(x) := g(x) := 0$ definierst.

LG Felix


Bezug
                                
Bezug
Unstetige f,g => gof unstetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Sa 26.04.2008
Autor: abakus

Hallo,
die Funktion [mm] f(x)=\begin{cases} 1, & \mbox{für } x\ge0 \\ 0, & \mbox{für } x<0\end{cases} [/mm] ist an der Stelle x=0 nicht stetig.
Die Funktion g(x)=1-f(x) ist dort dann ebenfalls unstetig.
Die additive Verknüpfung f(x)+g(x) ist allerdings konstant 1 und damit stetig.
Viele Grüße
Abakus


Bezug
                                        
Bezug
Unstetige f,g => gof unstetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Sa 26.04.2008
Autor: felixf

Hallo Abakus,

> die Funktion [mm]f(x)=\begin{cases} 1, & \mbox{für } x\ge0 \\ 0, & \mbox{für } x<0\end{cases}[/mm]
> ist an der Stelle x=0 nicht stetig.
>  Die Funktion g(x)=1-f(x) ist dort dann ebenfalls
> unstetig.
>  Die additive Verknüpfung f(x)+g(x) ist allerdings konstant
> 1 und damit stetig.

das stimmt. Funktioniert auch ganz allgemein: ist $f$ unstetig in [mm] $x_0$ [/mm] und $h$ stetig in [mm] $x_0$, [/mm] so setze $g := h - f$; dann sind $f$ und $h$ unstetig in [mm] $x_0$ [/mm] und $f + g = h$ ist es nicht...

In diesem Thread geht's aber um's Verketten und nicht um's Addieren...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]