matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieUntergitter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Untergitter
Untergitter < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Mo 13.05.2013
Autor: Tine90

Aufgabe
[mm] \paragraph*{Satz 4.5.1:} [/mm] Seien [mm] $\Lambda\subseteq\Gamma$ [/mm] Gitter im [mm] $\mathbb{R}^n$. [/mm] Dann ist

[mm] \frac{d(\Lambda)}{d(\Gamma)}=: D\in\mathbb{N} [/mm]

und das Gitter [mm] $D\Gamma=\{Da|a\in\Gamma\}$ [/mm] erfüllt [mm] $D\Gamma\subseteq\Lambda\subseteq\Gamma$.\\ [/mm]
[mm] \textbf{Beweis:} [/mm] Sei [mm] $B=(b_1,\dots,b_n)$ [/mm] eine Basis von [mm] $\Lambda$ [/mm] und [mm] $A=(a_1,\dots,a_n)$ [/mm] eine Basis von [mm] $\Gamma$. [/mm] Dann existiert eine ganzzahlige [mm] $n\times [/mm] n$-Matrix V mit $B=AV$. V erfüllt offensichtlich $D=|det(V)|$, weil [mm] $D=\frac{vol(\Phi_\Lambda)}{vol(\Phi_\Gamma)}$ [/mm] und das ergibt das Volumen des Gitters, das durch V aufgespannt wird. Die Restklassen von [mm] $\Gamma [/mm] ~mod~ [mm] \Lambda$ [/mm] werden zum Beispiel durch jene Gitterpunkte von [mm] $\Gamma$ [/mm] repräsentiert, die in einer Grundmasche [mm] $\Phi_\Lambda$ [/mm] von [mm] $\Lambda$ [/mm] liegen und man kann theoretisch durch einen Vergleich mit dem Volumen von [mm] $\Phi_\Gamma$ [/mm] bereits jetzt sehen, dass die Anzahl [mm] $[\Gamma [/mm] : [mm] \Lambda]$ [/mm] dieser Repräsentanten der Restklassen genau D ist. DA ist also die Basis von [mm] $D\Gamma$ [/mm] und nach der Cramerschen Regel (vgl. Satz 3.5) hat die Matrix [mm] $DV^{-1}$ [/mm] ebenfalls ganzzahlige Koeffizienten. Dann folgt aus [mm] $DA=B\cdot DV^{-1}$, [/mm] dass DL ein Untergitter von [mm] $\Lambda$ [/mm] ist. [mm] \qed [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo =)
Ich habe hier einen Beweis über Untergitter, den ich nciht wirklich verstehe und wäre für jeden Tipp dankbar. Also ich hab verstanden, dass man das Volumen von [mm] $\Lambda$ [/mm] durch das Volumen von [mm] $\Gamma$ [/mm] teilt und dass das Volumen von [mm] $\Lambda$ [/mm] größer ist als das Volumen von [mm] $\Gamma$. [/mm] Ich verstehe aber vor allem die Umformung am Schluss nicht...
Lg =)

        
Bezug
Untergitter: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Di 14.05.2013
Autor: hippias


> [mm]\paragraph*{Satz 4.5.1:}[/mm] Seien [mm]\Lambda\subseteq\Gamma[/mm]
> Gitter im [mm]\mathbb{R}^n[/mm]. Dann ist
>
> [mm] \frac{d(\Lambda)}{d(\Gamma)}=: D\in\mathbb{N}[/mm]
>  
> und das Gitter [mm]D\Gamma=\{Da|a\in\Gamma\}[/mm] erfüllt
> [mm]D\Gamma\subseteq\Lambda\subseteq\Gamma[/mm][mm] .\\[/mm]
>  
> [mm]\textbf{Beweis:}[/mm] Sei [mm]B=(b_1,\dots,b_n)[/mm] eine Basis von
> [mm]\Lambda[/mm] und [mm]A=(a_1,\dots,a_n)[/mm] eine Basis von [mm]\Gamma[/mm]. Dann
> existiert eine ganzzahlige [mm]n\times n[/mm]-Matrix V mit [mm]B=AV[/mm]. V
> erfüllt offensichtlich [mm]D=|det(V)|[/mm], weil
> [mm]D=\frac{vol(\Phi_\Lambda)}{vol(\Phi_\Gamma)}[/mm] und das ergibt
> das Volumen des Gitters, das durch V aufgespannt wird. Die
> Restklassen von [mm]\Gamma ~mod~ \Lambda[/mm] werden zum Beispiel
> durch jene Gitterpunkte von [mm]\Gamma[/mm] repräsentiert, die in
> einer Grundmasche [mm]\Phi_\Lambda[/mm] von [mm]\Lambda[/mm] liegen und man
> kann theoretisch durch einen Vergleich mit dem Volumen von
> [mm]\Phi_\Gamma[/mm] bereits jetzt sehen, dass die Anzahl [mm][\Gamma : \Lambda][/mm]
> dieser Repräsentanten der Restklassen genau D ist. DA ist
> also die Basis von [mm]D\Gamma[/mm] und nach der Cramerschen Regel
> (vgl. Satz 3.5) hat die Matrix [mm]DV^{-1}[/mm] ebenfalls
> ganzzahlige Koeffizienten. Dann folgt aus [mm]DA=B\cdot DV^{-1}[/mm],
> dass DL ein Untergitter von [mm]\Lambda[/mm] ist. [mm]\qed[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo =)
>  Ich habe hier einen Beweis über Untergitter, den ich
> nciht wirklich verstehe und wäre für jeden Tipp dankbar.
> Also ich hab verstanden, dass man das Volumen von [mm]\Lambda[/mm]
> durch das Volumen von [mm]\Gamma[/mm] teilt und dass das Volumen von
> [mm]\Lambda[/mm] größer ist als das Volumen von [mm]\Gamma[/mm]. Ich
> verstehe aber vor allem die Umformung am Schluss nicht...
>  Lg =)

Du solltest etwas praeziser fragen! Auf jeden Fall solltest Du Dir die Eigenschaften der Adjunkten (=transponierte Kofaktormatrix) einer Matrix anschauen, denn damit geht es ganz einfach: Ist naemlich $V'$ die Adjunkte zu $V$, so gilt naemlich $VV'= det(V) E$, $E$ Einheitsmatrix. Damit ist $BV'= AVV'= AD$, und danach Definition $V'$ wieder ganzzahlig ist,folgt damit, dass die Vektoren $AD$ ganzzahlige Linearkombination der Vektoren $B$ sind.

Bezug
                
Bezug
Untergitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 So 26.05.2013
Autor: Tine90

Ok, aber in meinem Beweis geht es doch um die Inverse Matrix [mm] V^{-1} [/mm] oder? Ich verstehe nicht, warum wir [mm] DV^{-1} [/mm] brauchen und wie man auf [mm] DA=BDV^{-1} [/mm] kommt oder was die Gleichung aussagt...Könntest du mir da noch einmal weiterhelfen?
Liebe Grüße,
Tine

Bezug
                        
Bezug
Untergitter: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mo 27.05.2013
Autor: hippias

Wie bereits erwaehnt: Ist $V'$ die Adjunkte zu $V$,so ist ganz allgemein $V'V= VV'= DE$, $E$ Einheitsmatrix. Dann folgt doch [mm] $V^{-1}= D^{-1}V'$, [/mm] weshalb das [mm] $DV^{-1}$, [/mm] das in Deinem Beweis benutzt wird, nichts anderes als meine Adjunkte $V'$ ist, die nach Definition ganzzahlig ist, weil $V$ ganzzahlig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]