matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenUntersuchung von Exponentialfu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Untersuchung von Exponentialfu
Untersuchung von Exponentialfu < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung von Exponentialfu: Auflösung einer Klammer mit e
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 19.02.2008
Autor: headbanger

Aufgabe
Der Verlauf des Trageseiles  einer Hängebrücke kann durch eine Kettenlinie angenähert werden.
Diese ist der Graph der Funktion [mm] f_{a c}(x)=\bruch{a}{2c}(e^{cx}+e^{-cx}) [/mm]

an welchen stellen befindet sich das Seil ca. 15m über der fahrbahn?

c=0,24
a=0,123

-->f(x)=2,5 [mm] (e^{cx}+e^{-cx}) [/mm]

hab 15 = 2,5 (...) gesetzt), dann mal  1/2,5

--> [mm] 6=e^{cx}+e^{-cx} [/mm]       dann mit dem ln  logarithmiert

--> ln6=cx-cx

das kann aber nicht sein, weil dann 6=0 rauskommen würde

wie lös ich die eulerschen zahlen in der klammer richtig auf?

mfg

        
Bezug
Untersuchung von Exponentialfu: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Di 19.02.2008
Autor: Martinius

Hallo,

> Der Verlauf des Trageseiles  einer Hängebrücke kann durch
> eine Kettenlinie angenähert werden.
>  Diese ist der Graph der Funktion [mm]f_{a c}(x)=\bruch{a}{2c}(e^{cx}+e^{-cx})[/mm]
>  
> an welchen stellen befindet sich das Seil ca. 15m über der
> fahrbahn?
>  c=0,24
>  a=0,123
>  
> -->f(x)=2,5 [mm](e^{cx}+e^{-cx})[/mm]

Das müsste nach deinen Angaben heißen:

--> [mm] $f(x)=\bruch{0,123}{2*0,24}(e^{cx}+e^{-cx})= 0,25625*(e^{cx}+e^{-cx})$ [/mm]

>  
> hab 15 = 2,5 (...) gesetzt), dann mal  1/2,5

>

; das müsste dann heißen:  15 = 0,25625 (...) gesetzt),


  

> --> [mm]6=e^{cx}+e^{-cx}[/mm]       dann mit dem ln  logarithmiert

Das ist nicht richtig. Der Logarithmus der Summe lässt sich nicht auflösen.

> --> ln6=cx-cx

Wenn dass rauskommen sollte, hätte vor dem Logarithmieren ein Produkt beider e-Funktionen da stehen müssen.
  

> das kann aber nicht sein, weil dann 6=0 rauskommen würde
>  
> wie lös ich die eulerschen zahlen in der klammer richtig
> auf?

Zuerst einmal deine Funktion als Hyberbelfunktion schreiben:

[mm] $15=\bruch{0,123}{2*0,24}(e^{cx}+e^{-cx})= \bruch{0,123}{0,24}*cosh(cx)=0,5125*cosh(0,24*x)$ [/mm]

[mm] $\bruch{15}{0,5125}= [/mm] cosh(0,24*x)$

$x = [mm] \bruch{1}{0,24}*arcosh\left(\bruch{15}{0,5125}\right)$ [/mm]

$x [mm] \approx [/mm] 16,956$

Und da der Cosinus hyperbolicus achsensymmentrisch ist, ist auch $x [mm] \approx [/mm] -16,956$ eine Lösung der Aufgabe.


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]