matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUrbild
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Urbild
Urbild < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild: Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:05 Do 21.11.2013
Autor: pc_doctor

Hallo,

ich versteh das Urbild einer Funktion nicht.

Ich habe zum Beispiel die Funktion f : [mm] \IR \rightarrow \IR [/mm] : x [mm] \mapsto x^2 [/mm]

Was ist dann das Urbild dieser konkreten Funktion ?

Vielen Dank im Voraus.

        
Bezug
Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Do 21.11.2013
Autor: meili

Hallo,

> Hallo,
>  
> ich versteh das Urbild einer Funktion nicht.
>
> Ich habe zum Beispiel die Funktion f : [mm]\IR \rightarrow \IR[/mm]
> : x [mm]\mapsto x^2[/mm]
>  
> Was ist dann das Urbild dieser konkreten Funktion ?

[mm] $\IR$ [/mm]

[mm] $f^{-1}(f(\IR)) [/mm] = [mm] \IR$ [/mm]

Sei $M [mm] \subseteq \IR$. [/mm]
[mm] $f^{-1}(M) [/mm] = [mm] \{x \in \IR | f(x) \in M \}$ [/mm]
Vergleiche []Urbild

>  
> Vielen Dank im Voraus.

Gruß
meili

Bezug
                
Bezug
Urbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Do 21.11.2013
Autor: pc_doctor

Hallo,
danke für die Antwort. Aber noch bin ich mir nicht sicher ( zu viele formale Sachen )

Also auf Wikipedia steht folgendes:

Für die Funktion f [mm] \IZ [/mm] -> [mm] \IZ [/mm]  (ganze Zahlen) mit [mm] f(x)=x^2 [/mm] gilt:

    [mm] f^{-1}(4) [/mm] = [mm] \{2,-2\} [/mm]
Das heißt also , ich muss jene Werte suchen, die , wenn ich sie in f einsetze, 4 ergeben.

[mm] f^{-1}(6) [/mm] wär dann also die leere Menge , weil es keine Zahl gibt , die quadriert 6 ergibt. Habe ich das richtig verstanden ?

Bezug
                        
Bezug
Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Do 21.11.2013
Autor: Diophant

Hallo,

> Hallo,
> danke für die Antwort. Aber noch bin ich mir nicht sicher
> ( zu viele formale Sachen )

>

> Also auf Wikipedia steht folgendes:

>

> Für die Funktion f [mm]\IZ[/mm] -> [mm]\IZ[/mm] (ganze Zahlen) mit [mm]f(x)=x^2[/mm]
> gilt:

>

> [mm]f^{-1}(4)[/mm] = [mm]\{2,-2\}[/mm]
> Das heißt also , ich muss jene Werte suchen, die , wenn
> ich sie in f einsetze, 4 ergeben.

>

> [mm]f^{-1}(6)[/mm] wär dann also die leere Menge , weil es keine
> Zahl gibt , die quadriert 6 ergibt. Habe ich das richtig
> verstanden ?

Wenn du nach dem Urbild für einen konkreten Funktionswert suchst (Achtung: das hast du oben anders formuliert!), dann  ist das so richtig. Die Sache ändert sich natürlich, wenn man die Funktion auf ganz [mm] \IR [/mm] fortsetzt.


Gruß, Diophant 

Bezug
                                
Bezug
Urbild: Konkrete Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 19:58 Do 21.11.2013
Autor: pc_doctor

Alles klar , vielen Dank.

Kommen wir nun zu einer konkreten Aufgabe:

Ich habe g : [mm] \IR [/mm] -> [mm] \IR [/mm] , g(x) = (x) ( Floor-Funktion bzw. Abrundungsfunktion) z.b g(0,1) = 0 , g(1,5) = 1

Ich soll das Urbild [mm] g^{-1} \{x | 0 \mbox{ < x <1 }\} [/mm] bestimmen.

Nun , jetzt gibt es ja unendlich viele Zahlen zwischen 0 und 1. Kann ich das irgendwie mit lim machen, oder was wäre hierfür der Ansatz ?


Bezug
                                        
Bezug
Urbild: Doppelposting
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 Do 21.11.2013
Autor: Diophant

Hallo pc-doctor,

raffiniert eingefädelt, indem du es durch eine andere Frage tarnst. Aber das hast du bereits []hier vor einer guten Stunde gefragt, da würde ich doch sagen wartest du jetzt erst einmal in aller Ruhe ab, was dir dort an Hilfestellung gegeben wird!

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]