matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikUrnenmodelle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Urnenmodelle
Urnenmodelle < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodelle: Aufgabe zu Skat
Status: (Frage) überfällig Status 
Datum: 20:39 Sa 04.11.2006
Autor: the-one

Aufgabe
[Urnenmodelle]Ein gut gemischtes Skatspiel wird an drei Spieler verteilt, wobei zwei Karten "in den Skat" gelegt werden. Wie groß ist die Wahrscheinlichkeit, dass
a) ein beliebiger Spieler alle Buben erhält?
b) ein bestimmter Spieler keinen Buben erhält?
c) genau k Buben im Skat liegen (k=0,1,2)?

Hallo zusammen,

diese Aufgabe beschäftigt mich nun schon eine ganze Weile und ich komme einfach nicht vorwärts.

Zum W-Raum habe ich mir folgendes überlegt:
[mm] Omega={w=(w1,...,w32):wi\in{1,...,32}, wi\not=wj, i\not=j} [/mm]
Ich hoffe mal das stimmt so.
Mächtigkeit von Omega ist meiner Meinung nach = 32!

Doch nun mein Problem. Wie beschreibe ich, dass ein beliebiger Spieler alle Buben bekommt? Wenn ich Karten verteile, kann ich ja nicht von der Ausgangssituation ausgehen, dass alle Spieler 10 Karten haben.
Es ist doch so: 1. Spieler bekommt mit Wkt 4/32 einen Buben hat er einen Buben bekommen, so bekommt der 2. Spieler mit Wkt 3/31 einen Buben falls nicht bekommt der 2. Spieler mit Wkt 4/31 einen Buben.

Nur wie packe ich diese ganzen Informationen in ein Urnenmodell?
Sorry bin totaler Anfänger. Ein Ansatz an dem ich mich probieren könnte würde mir schon sehr helfen.

Vielen Dank für eure Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Urnenmodelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 Sa 04.11.2006
Autor: luis52

Hallo the-one,

leider stimmt 32! nicht. Nenne die  Spieler V(orhand), M(ittelhand) und
H(interhand). Der Skat sei S. Du musst zunaechst fragen, wieviel
Moeglichkeiten es gibt, die 32 Karten so zu verteilen, dass V, M und H
jeweils 10 Karten und S 2 Karten erhaelt. Solche Fragen werden mit dem
Multinomialkoeffizienten geloest. Im vorliegenden Fall besteht [mm] $\Omega$ [/mm]
aus [mm] ${32\choose 10,10,10,2}=(32!)/(10!\times 10!\times 10!\times [/mm] 2!)$
Elementen.

Bei den Teilaufgaben koennten auch Multinomialkoeffizienten eine Rolle
spielen. Bei c) duerfte es helfen, sich mit dem Begriff der
hypergeometrischen Verteilung vertraut zu machen.

hth
            

Bezug
        
Bezug
Urnenmodelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:21 So 05.11.2006
Autor: Walde

Hi the-one.

ich komm grad von ner Party und bin mittelschwer angetrunken,also genieße mein Tipps bitte mit Vorsicht.

Ich würde sagen, dass alle deine Ereignisse einer hypergeometrischen Verteilung folgen. Dass heisst einem Urnenmodell:Ziehen ohne zurücklegen. Du hast eine Urne mit 32 verschiedenen Kugeln (die Karten), aus der gezogen (verteilt wird). Das Ereignis "ein bestimmter Spieler erhält 4 Buben" auf das Urnenmodell übertragen heisst:
Es gibt 28 weisse Kugeln (nicht Buben) und 4 rote (Buben) in der Urne. Der Spieler zieht 10 Kugeln raus (ohne zurücklegen).
Die Zufallsvariable
X: Anzahl der Buben
ist hypergeometrisch verteilt, mit
[mm] P(X=4)=\bruch{\vektor{4 \\ 4}\vektor{28 \\ 6}}{\vektor{32 \\ 10}} [/mm]

Das bedeutet: Es gibt 4 Buben und 28 nicht Buben. Er hat 4 von 4 Buben und von den 28 anderen Karten beliebige 6 Stück. Insgesamt gibt es [mm] \vektor{32 \\ 10} [/mm] mögliche Kartenkombinationen. (Das ist wie die bekannte Lottoformel 6 aus 49 ). Beachten musst du noch, dass es ja drei Spieler gibt und jeder diese Wahrscheinlichkeit hat, also noch mit drei multiplizieren.

Dafür, dass ein bestimmter Spieler keinen Buben hat, gilt dann

[mm] P(X=0)=\bruch{\vektor{4 \\ 0}\vektor{28 \\ 10}}{\vektor{32 \\ 10}} [/mm]

0 von 4 Buben und 10 von den 28 anderen Karten.

k Buben im Skat:

X:Anzahl Buben im Skat

[mm] P(X=k)=\bruch{\vektor{4 \\ k}\vektor{28 \\ 2-k}}{\vektor{32 \\ 2}} [/mm]

Man zieht quasi 2 mal, also [mm] \vektor{32 \\ 2} [/mm] Möglichkeiten. Es gibt 4 Buben und 28 nicht Buben. Man zieht (in den Skat verteilt ist damit gemeint)  k Buben (k=0,1,2) und 2-k nicht Buben (in den Skat). Kannst dir ja auch mal den Wikipedia-Artikel über die []hypergeom. Vert. durchlesen.

L G walde

Bezug
                
Bezug
Urnenmodelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 So 05.11.2006
Autor: the-one

Hallo zusammen

@luis52: Handelt es sich bei diesem Modell nicht um ein Modell ohne Zurücklegen? Mulitnomialverteilung wäre doch mit Zurücklegen, oder?

@walde: Vielen Dank für deinen Ansatz. Klingt super logisch und hat mir sehr weitergeholfen.

Vielen Vielen Dank.

the-one

Bezug
        
Bezug
Urnenmodelle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 09.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]