matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenVektorbestimmung auf Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Vektorbestimmung auf Ebene
Vektorbestimmung auf Ebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorbestimmung auf Ebene: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 20.11.2007
Autor: tinker10002

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ebene durch die Punkte A(1,5,1) B(-4,2,1) und C(2,0,-2) definiert.
Finde den Vektor der Länge 6, der senkrecht auf der Ebene steht.


Weiß wie ich Ebenengleichen aufstellen kann und den Normalenvektor ... komme aber nicht weiter ... wer hat eíne Idee?!?

        
Bezug
Vektorbestimmung auf Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Di 20.11.2007
Autor: Mato


> Weiß wie ich Ebenengleichen aufstellen kann und den
> Normalenvektor ... komme aber nicht weiter ... wer hat eíne
> Idee?!?

Also wenn du den Normalenvektor hast, dann mach daraus einen Einheitsvektor, der die Länge eins eben hat, und multipliziere diesen mit 6, sodass du einen Normalenvektor hast mit der Länge 6.
Einen Einheitsvektor bestimmt man mit dieser Formel: [mm] \bruch{1}{\wurzel{|\vec{n}|}} [/mm] * [mm] \vec{n} [/mm] (für beliebigen Vektor)
Verstanden?


Bezug
                
Bezug
Vektorbestimmung auf Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 20.11.2007
Autor: tinker10002

Also mein Normalenvektor ist [mm] \vektor{9\\-15\\28} [/mm] und dann ist der Einheitsvektor [mm] \bruch{1}{33} \vektor{9\\-15\\28} [/mm] .... und dann?!?

Bezug
                        
Bezug
Vektorbestimmung auf Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Di 20.11.2007
Autor: tinker10002

Ist das Ergebnis [mm] \bruch{2}{11} \vektor{9 \\ -15 \\ 28}, [/mm] denn das Ergebnis wäre [mm] \wurzel [/mm] {36} = 6

Bezug
                        
Bezug
Vektorbestimmung auf Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Di 20.11.2007
Autor: Mato


> Also mein Normalenvektor ist [mm]\vektor{9\\-15\\28}[/mm] und dann
> ist der Einheitsvektor [mm]\bruch{1}{33} \vektor{9\\-15\\28}[/mm]
> .... und dann?!?

also [mm]\bruch{1}{33} \vektor{9\\-15\\28}[/mm] stimmt ja nich ganz. zieh die wurzel am besten gar nich. dann musst du ja mal 6 nehmen  [mm]\bruch{6}{\wurzel{1090}} \vektor{9\\-15\\28}[/mm], und dieser vektor hat dann die länge 6. Übrigens gehe ich davon aus dass du den normalenvektor richtig bestimmt hast, denn ich habe es nich überprüft, ob dieser vektor wirklich ein normalenvektor dieser ebene ist ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]