matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVerbandstheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Verbandstheorie
Verbandstheorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verbandstheorie: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 16:53 Mo 23.01.2006
Autor: Pumpkin1983

Aufgabe
Untersuchen Sie ob es sich um einen Verband handelt.
Gegeben: M={2,3,4,5,6,7,12,25} mit R="|", also Teilerrelation.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hab die Aufgabe schon probiert, nur hab ich im Grunde ein Verständnisproblem des ganzen.

Lösung (nicht komplett):
die Paare stehen dann in der Relation bei aRb mit [mm] a\*n=b [/mm] mit n [mm] \in [/mm] nat. Zahlen (ohne Null).

Also

R={(2,2),(2,4),(2,6),(2,12),(3,3),(3,6),(3,12),(4,4),(4,12),(5,5),(5,25),(6,6),(6,12),(7,7),
(12,12),(25,25)}

Die Definition vom Verband lautet ja:
Eine halbgeordnete Menge M ist Verband :  [mm] \gdw [/mm] zu jeder nichtleeren Teilmenge B  [mm] \subseteq [/mm] M in M sowohl das Infimum ( [mm] inf_{M}B) [/mm] existiert und das Supremum ( [mm] sup_{M}B) [/mm] existiert.

Wenn ich mir nun die Relationspaare (a,b) anschaue, würde
ich als Lösung sagen, da es bei a=7 kein b gibt (da [mm] a\not=b [/mm] sein muss)
und bei a=12 kein b gibt (da [mm] a\not=b [/mm] sein muss -> siehe Frage 2)
ist kein volständiger Verband. Wäre das vollkommen richtig ???


Nun weiss ich nicht weiter...
1. Frage: beim Verband handelt es sich ja um eine 2 elementige Teilmenge
    B={a,b}. Heisst das jetzt das jetzt a  [mm] \not= [/mm] b sein muss oder Nicht.
    Ich denk mir nämlich, beim Verband handelt es sich um eine 2 elementige
    Teilmenge und wenn a=b wäre, dann wäre die Menge ja nicht mehr
    2 elementig. Also fällt das ja raus oder nicht und bedeutet somit, dass
    a [mm] \not= [/mm] b sein MUSS oder nicht ???

2. Kann das Supremum auch gleichzeitig Infimum sein ???
    Bei (7,7) ist das Infimum ja 7 und das Supremum auch. Heisst das jetzt
    bei 7 ist das Infimum gleich dem Supremum oder bedeutet das wenn
    sup=inf, das 7 gar kein Supremum, Infimum hat ???



        
Bezug
Verbandstheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 23.01.2006
Autor: mathiash

Hallo,

also die Grundmenge ist [mm] \{2,3,4,5,6,7,12,25\}, [/mm] und es soll

[mm] a\leq [/mm] b     : gdw     a teilt b     gelten (Def. der Relation [mm] \leq). [/mm]

Frage ist dann: Erfuellt  die Grundmenge mit der Relation [mm] \leq [/mm] die Axiome fuer Verbaende.

Suprema und Infima fuer allg. Teilmengen der Grundmenge existieren i.a. nicht, aber
in Verbaenden natuerlich dann, wenn die Grundmenge endlich ist (zB hier).

Es muessten also hier auch [mm] \inf [/mm] M und sum M fuer
[mm] M=\{2,3,4,5,6,7.12,25\} [/mm] existieren, tun sie aber nicht

(denn zB   2 und 3 haben ggT 1, aber 1 ist nicht in M).

Also: Kein Verband !

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]