matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVereinigung 2-er Untergruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Vereinigung 2-er Untergruppen
Vereinigung 2-er Untergruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung 2-er Untergruppen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:21 Do 28.10.2004
Autor: chripi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich hab mal eine Frage. Uns wurde die Aufgabe gestellt:

Die Vereinigung zweier Untergruppen einer Gruppe G ist im allgemeinen keine Untergruppe von G. Zeigen sie dies durch Angabe eines Beispiels.

Das es zwei Untergruppen gibt, habe ich schon bewiesen. Mein Problem ist das Beispiel. Könnt ihr mir da Helfen?
Danke!!!

        
Bezug
Vereinigung 2-er Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Do 28.10.2004
Autor: Micha

Hallo!

[willkommenmr]

Schwierig wird es immer dann, wenn zwei Elemente von zwei verschiedenen Untergruppen aufeinanderprallen.
Dort hapert es dann meistens an der Abgeschlossenheit der Addition.

Im Fischer steht folgende Definition einer Untergruppe:
Sei G eine Gruppe mit der Verknüpfung [mm] $\cdot$ [/mm] und $G' [mm] \subset [/mm] G $ eine nichtleere Teilmenge. [mm] $G\,'$ [/mm] heißt Untergruppe, wenn für $a,b [mm] \in G\,'$ [/mm] auch [mm] $a\cdot [/mm] b [mm] \in G\,'$ [/mm] und [mm] $a^{-1} \in G\,'$. [/mm]


Ich konstruiere dir mal eine Gruppe G mit zwei Untergruppen:

[mm]\begin{matrix} \cdot &|&0& a & b & c \\ 0 &|& 0&a & b & c \\ a &|& a &0 & c& b \\ b &|& b & c & 0 & a \\ c &|& c & b & a & 0 \\ \end{matrix}[/mm]

dann ist [mm] $G_1 [/mm] := [mm] (\{0,a\}, \cdot)$ [/mm] eine Untergruppe und [mm] $G_2 [/mm] := [mm] (\{0,b\}, \cdot)$. [/mm]

Du siehst aber ganz leicht, dass die Verknüpfung von $a,b [mm] \in ((G_1 \cup G_2), \cdot)$ [/mm] nicht in [mm] $(G_1 \cup G_2)$ [/mm] liegt. Damit ist die Abgeschlossenheit verletzt und die Vereinigung ist keine Untergruppe.

Ich hoffe du konntest es an diesem Beispiel sehen, was ich meine. Wenn nicht, frage bitte nach.

Gruß Micha ;-)

Bezug
                
Bezug
Vereinigung 2-er Untergruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Do 28.10.2004
Autor: chripi

Danke, mir ist es jetzt klarer geworden.

Bezug
                
Bezug
Vereinigung 2-er Untergruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Do 28.10.2004
Autor: chripi

Danke für deine Mühe. Mir ist es jetzt klarer geworden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]