matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesVereinigung konvexer Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Vereinigung konvexer Mengen
Vereinigung konvexer Mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung konvexer Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 11.04.2011
Autor: fussel1000

Aufgabe
Seien A,B [mm] \subseteq \IR^n [/mm] konvexe Mengen.
Zeigen Sie:
a.) A  [mm] \cup [/mm] B ist i.A. nicht konvex.
b.) A [mm] \setminus [/mm] B ist i. A. nicht konvex.


Hallo zusammen,
soll obiges beweisen und steh total auf dem Schlauch.

Also meine Idee ist folgende:
a.) zu zeigen ist ja für x,y [mm] \in [/mm] A [mm] \cup [/mm] B gilt: [mm] \lambda [/mm] x + (1 - [mm] \lambda) [/mm] y [mm] \not\in [/mm] A [mm] \cup [/mm] B gilt für [mm] \lambda \in [/mm] [0,1].
Ist ja z.B. dann der Fall, wenn ich als A und B zwei Kreise habe, die disjunkt sind, also A [mm] \cap [/mm] B = [mm] \emptyset [/mm] .
Nun nehme ich Punkte aus A und B, also
x [mm] \in [/mm] A und y [mm] \in [/mm] B aber x [mm] \not\in [/mm] B und y [mm] \not\in [/mm] A .
Wie folgere ich nun daraus , dass [mm] \lambda [/mm] x + (1- [mm] \lambda) [/mm] y [mm] \not\in [/mm] A [mm] \cup [/mm] B ?

zu b.)
Nehme z.b. als A und B wieder zwei Kreise, die sich schneiden.
Ja keine Ahnung, vielleicht Widerspruchsbeweis?
Aber was ist der Widerspruch, der zu beweisen ist?

Danke für Hinweise.




        
Bezug
Vereinigung konvexer Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Mo 11.04.2011
Autor: Docy

Hallo fussel,
deine Beweisidee ist doch völlig richtig. Du musst in diesem Fall einfach nur je ein Gegenbeispiel finden. Erstelle dir doch einfach mal 2 Kreise in der Ebene (im [mm] \IR^{n} [/mm] funktioniert das Ganze dann auch, indem man für die weiteren Dimensionen 0en einfügt). Am besten mit konkreten Werten für Radius und Mittelpunkt, wie beispielsweise Kreis A mit Mittelpunkt (1,0) und Radius 1 und Kreis B mit Mittelpunkt (4,0) und Radius 1, dann ist für [mm] \lambda= [/mm] 1,5 und x als Mittelpunkt von A und y als Mittelpunkt von B das Gegenbeispiel konstruiert. Genauso verfährst du in Teil b).
Hoffentlich hilft das ein wenig.

LG Docy

Bezug
                
Bezug
Vereinigung konvexer Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Mo 11.04.2011
Autor: fussel1000

Ahhhhhhh ja danke, nun ist der Knoten geplatzt.
Hab vor lauter Bäume den Wald nicht mehr gesehen. :-)
Klar ein gegenbeispiel reicht, ich hab die ganze zeit versucht das allgemein zu beweisen. vielen Dank für den Hinweis. :-D


Bezug
                        
Bezug
Vereinigung konvexer Mengen: PS
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mo 11.04.2011
Autor: fussel1000

hab irgendwie keine Ahnung, wie man den Artikel nun auf "Frage beantwortet" setzt!? Deshalb steht der noch als offen, sorry dafür...

Bezug
        
Bezug
Vereinigung konvexer Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:26 Mo 11.04.2011
Autor: Docy

Kein Problem ^^, gern geschen.

LG Docy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]