matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenVerlauf v. Exp- & Log-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Verlauf v. Exp- & Log-Funktion
Verlauf v. Exp- & Log-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verlauf v. Exp- & Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Fr 30.03.2018
Autor: Valkyrion

Aufgabe
Verlaufen alle Exponentialfunktionen oberhalb der x-Achse, und alle Log-Funktionen rechts der y-Achse?

Was ist beispielsweise mit [mm] e^{x}-2 [/mm] bzw. mit ln(-x)?
Sind das keine Exp.- bzw. Log-Funktionen?

        
Bezug
Verlauf v. Exp- & Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 30.03.2018
Autor: Diophant

Hallo,

> Verlaufen alle Exponentialfunktionen oberhalb der x-Achse,
> und alle Log-Funktionen rechts der y-Achse?
> Was ist beispielsweise mit [mm]e^{x}-2[/mm] bzw. mit ln(-x)?
> Sind das keine Exp.- bzw. Log-Funktionen?

Hier muss man ganz klar sagen, dass die Begriffe im Rahmen der Schulmathematik sehr uneinheitlich verwendet werden. Nehmen wir die exakte Wortbedeutung, also

Exponentialfunktion: [mm] f(x)=a^x [/mm] , a>0
Logarithmusfunktion: f(x)=log(x) , x>0

dann ist die Aussage richtig.

In der Schule wird aber gerne so benannt, dass es bspw. schon ausreicht, dass die Exponential- oder Logarithmusfunktion im Funktionsterm vorkommen, um den entsprechenden Begriff zu verwenden.

Beispiele:

[mm] f(x)=x*e^x [/mm]
g(x)=log(x)-x

Viele Lehrer (und auch viele Schulbücher und damit dann auch viele Schüler) benennen die Funktion f auch als Exponentialfunktion, die g als Logarithmusfunktion.

Aber die fraglichen Eigenschaften können dann natürlich nicht mehr gelten. Bei deinen Beispielen ist das weniger offensichtlich, aber vom Prinzip her das gleiche: deine 'Exponentialfunktion' ist um zwei nach unten verschoben, die 'Logarithmusfunktion' an der y-Achse gespiegelt.

Zusammengefasst: das ist eine Frage der Verwendung der Begriffe.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]